CoLaNET -- 用于分类的柱状分层结构尖峰神经网络

Mikhail Kiselev
{"title":"CoLaNET -- 用于分类的柱状分层结构尖峰神经网络","authors":"Mikhail Kiselev","doi":"arxiv-2409.01230","DOIUrl":null,"url":null,"abstract":"In the present paper, I describe a spiking neural network (SNN) architecture\nwhich, can be used in wide range of supervised learning classification tasks.\nIt is assumed, that all participating signals (the classified object\ndescription, correct class label and SNN decision) have spiking nature. The\ndistinctive feature of this architecture is a combination of prototypical\nnetwork structures corresponding to different classes and significantly\ndistinctive instances of one class (=columns) and functionally differing\npopulations of neurons inside columns (=layers). The other distinctive feature\nis a novel combination of anti-Hebbian and dopamine-modulated plasticity. The\nplasticity rules are local and do not use the backpropagation principle.\nBesides that, as in my previous studies, I was guided by the requirement that\nthe all neuron/plasticity models should be easily implemented on modern\nneurochips. I illustrate the high performance of my network on the MNIST\nbenchmark.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoLaNET -- A Spiking Neural Network with Columnar Layered Architecture for Classification\",\"authors\":\"Mikhail Kiselev\",\"doi\":\"arxiv-2409.01230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, I describe a spiking neural network (SNN) architecture\\nwhich, can be used in wide range of supervised learning classification tasks.\\nIt is assumed, that all participating signals (the classified object\\ndescription, correct class label and SNN decision) have spiking nature. The\\ndistinctive feature of this architecture is a combination of prototypical\\nnetwork structures corresponding to different classes and significantly\\ndistinctive instances of one class (=columns) and functionally differing\\npopulations of neurons inside columns (=layers). The other distinctive feature\\nis a novel combination of anti-Hebbian and dopamine-modulated plasticity. The\\nplasticity rules are local and do not use the backpropagation principle.\\nBesides that, as in my previous studies, I was guided by the requirement that\\nthe all neuron/plasticity models should be easily implemented on modern\\nneurochips. I illustrate the high performance of my network on the MNIST\\nbenchmark.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我描述了一种尖峰神经网络(SNN)架构,该架构可用于广泛的监督学习分类任务。假设所有参与信号(分类对象描述、正确类别标签和 SNN 决策)都具有尖峰特性。该架构的显著特点是结合了对应不同类别的原型网络结构和一个类别的显著不同实例(=列)以及列内功能不同的神经元群(=层)。另一个显著特点是反黑比安和多巴胺调节的可塑性的新组合。此外,与之前的研究一样,我的要求是所有神经元/可塑性模型都应易于在现代神经芯片上实现。我在 MNIST 基准测试中展示了我的网络的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CoLaNET -- A Spiking Neural Network with Columnar Layered Architecture for Classification
In the present paper, I describe a spiking neural network (SNN) architecture which, can be used in wide range of supervised learning classification tasks. It is assumed, that all participating signals (the classified object description, correct class label and SNN decision) have spiking nature. The distinctive feature of this architecture is a combination of prototypical network structures corresponding to different classes and significantly distinctive instances of one class (=columns) and functionally differing populations of neurons inside columns (=layers). The other distinctive feature is a novel combination of anti-Hebbian and dopamine-modulated plasticity. The plasticity rules are local and do not use the backpropagation principle. Besides that, as in my previous studies, I was guided by the requirement that the all neuron/plasticity models should be easily implemented on modern neurochips. I illustrate the high performance of my network on the MNIST benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1