利用神经切线集合进行持续学习

Ari S. Benjamin, Christian Pehle, Kyle Daruwalla
{"title":"利用神经切线集合进行持续学习","authors":"Ari S. Benjamin, Christian Pehle, Kyle Daruwalla","doi":"arxiv-2408.17394","DOIUrl":null,"url":null,"abstract":"A natural strategy for continual learning is to weigh a Bayesian ensemble of\nfixed functions. This suggests that if a (single) neural network could be\ninterpreted as an ensemble, one could design effective algorithms that learn\nwithout forgetting. To realize this possibility, we observe that a neural\nnetwork classifier with N parameters can be interpreted as a weighted ensemble\nof N classifiers, and that in the lazy regime limit these classifiers are fixed\nthroughout learning. We term these classifiers the neural tangent experts and\nshow they output valid probability distributions over the labels. We then\nderive the likelihood and posterior probability of each expert given past data.\nSurprisingly, we learn that the posterior updates for these experts are\nequivalent to a scaled and projected form of stochastic gradient descent (SGD)\nover the network weights. Away from the lazy regime, networks can be seen as\nensembles of adaptive experts which improve over time. These results offer a\nnew interpretation of neural networks as Bayesian ensembles of experts,\nproviding a principled framework for understanding and mitigating catastrophic\nforgetting in continual learning settings.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"2010 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continual learning with the neural tangent ensemble\",\"authors\":\"Ari S. Benjamin, Christian Pehle, Kyle Daruwalla\",\"doi\":\"arxiv-2408.17394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A natural strategy for continual learning is to weigh a Bayesian ensemble of\\nfixed functions. This suggests that if a (single) neural network could be\\ninterpreted as an ensemble, one could design effective algorithms that learn\\nwithout forgetting. To realize this possibility, we observe that a neural\\nnetwork classifier with N parameters can be interpreted as a weighted ensemble\\nof N classifiers, and that in the lazy regime limit these classifiers are fixed\\nthroughout learning. We term these classifiers the neural tangent experts and\\nshow they output valid probability distributions over the labels. We then\\nderive the likelihood and posterior probability of each expert given past data.\\nSurprisingly, we learn that the posterior updates for these experts are\\nequivalent to a scaled and projected form of stochastic gradient descent (SGD)\\nover the network weights. Away from the lazy regime, networks can be seen as\\nensembles of adaptive experts which improve over time. These results offer a\\nnew interpretation of neural networks as Bayesian ensembles of experts,\\nproviding a principled framework for understanding and mitigating catastrophic\\nforgetting in continual learning settings.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"2010 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

持续学习的一种自然策略是权衡一个贝叶斯集合的固定函数。这表明,如果(单个)神经网络可以被解释为一个集合,那么我们就可以设计出有效的算法,实现无遗忘学习。为了实现这种可能性,我们观察到,具有 N 个参数的神经网络分类器可以被解释为 N 个分类器的加权集合,而且在懒惰机制限制下,这些分类器在整个学习过程中都是固定的。我们称这些分类器为神经切线专家,并证明它们能输出有效的标签概率分布。令人惊讶的是,我们发现这些专家的后验更新等同于网络权重上的随机梯度下降(SGD)的缩放和投影形式。脱离了懒惰机制,网络可以被看作是随时间不断改进的自适应专家的集合体。这些结果为神经网络作为贝叶斯专家集合提供了新的解释,为理解和减轻持续学习环境中的灾难性遗忘提供了一个原则性框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continual learning with the neural tangent ensemble
A natural strategy for continual learning is to weigh a Bayesian ensemble of fixed functions. This suggests that if a (single) neural network could be interpreted as an ensemble, one could design effective algorithms that learn without forgetting. To realize this possibility, we observe that a neural network classifier with N parameters can be interpreted as a weighted ensemble of N classifiers, and that in the lazy regime limit these classifiers are fixed throughout learning. We term these classifiers the neural tangent experts and show they output valid probability distributions over the labels. We then derive the likelihood and posterior probability of each expert given past data. Surprisingly, we learn that the posterior updates for these experts are equivalent to a scaled and projected form of stochastic gradient descent (SGD) over the network weights. Away from the lazy regime, networks can be seen as ensembles of adaptive experts which improve over time. These results offer a new interpretation of neural networks as Bayesian ensembles of experts, providing a principled framework for understanding and mitigating catastrophic forgetting in continual learning settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1