{"title":"消除神经网络文献中对 KART 和 UAT 的常见误读","authors":"Vugar Ismailov","doi":"arxiv-2408.16389","DOIUrl":null,"url":null,"abstract":"This note addresses the Kolmogorov-Arnold Representation Theorem (KART) and\nthe Universal Approximation Theorem (UAT), focusing on their common\nmisinterpretations in some papers related to neural network approximation. Our\nremarks aim to support a more accurate understanding of KART and UAT among\nneural network specialists.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing Common Misinterpretations of KART and UAT in Neural Network Literature\",\"authors\":\"Vugar Ismailov\",\"doi\":\"arxiv-2408.16389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note addresses the Kolmogorov-Arnold Representation Theorem (KART) and\\nthe Universal Approximation Theorem (UAT), focusing on their common\\nmisinterpretations in some papers related to neural network approximation. Our\\nremarks aim to support a more accurate understanding of KART and UAT among\\nneural network specialists.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
这篇论文讨论了科尔莫哥罗德-阿诺德表征定理(KART)和通用逼近定理(UAT),重点是它们在一些与神经网络逼近相关的论文中常见的错误解释。我们的评论旨在帮助神经网络专家更准确地理解 KART 和 UAT。
Addressing Common Misinterpretations of KART and UAT in Neural Network Literature
This note addresses the Kolmogorov-Arnold Representation Theorem (KART) and
the Universal Approximation Theorem (UAT), focusing on their common
misinterpretations in some papers related to neural network approximation. Our
remarks aim to support a more accurate understanding of KART and UAT among
neural network specialists.