消除神经网络文献中对 KART 和 UAT 的常见误读

Vugar Ismailov
{"title":"消除神经网络文献中对 KART 和 UAT 的常见误读","authors":"Vugar Ismailov","doi":"arxiv-2408.16389","DOIUrl":null,"url":null,"abstract":"This note addresses the Kolmogorov-Arnold Representation Theorem (KART) and\nthe Universal Approximation Theorem (UAT), focusing on their common\nmisinterpretations in some papers related to neural network approximation. Our\nremarks aim to support a more accurate understanding of KART and UAT among\nneural network specialists.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing Common Misinterpretations of KART and UAT in Neural Network Literature\",\"authors\":\"Vugar Ismailov\",\"doi\":\"arxiv-2408.16389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note addresses the Kolmogorov-Arnold Representation Theorem (KART) and\\nthe Universal Approximation Theorem (UAT), focusing on their common\\nmisinterpretations in some papers related to neural network approximation. Our\\nremarks aim to support a more accurate understanding of KART and UAT among\\nneural network specialists.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇论文讨论了科尔莫哥罗德-阿诺德表征定理(KART)和通用逼近定理(UAT),重点是它们在一些与神经网络逼近相关的论文中常见的错误解释。我们的评论旨在帮助神经网络专家更准确地理解 KART 和 UAT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Addressing Common Misinterpretations of KART and UAT in Neural Network Literature
This note addresses the Kolmogorov-Arnold Representation Theorem (KART) and the Universal Approximation Theorem (UAT), focusing on their common misinterpretations in some papers related to neural network approximation. Our remarks aim to support a more accurate understanding of KART and UAT among neural network specialists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1