用主动推理增强基于种群的搜索

Nassim Dehouche, Daniel Friedman
{"title":"用主动推理增强基于种群的搜索","authors":"Nassim Dehouche, Daniel Friedman","doi":"arxiv-2408.09548","DOIUrl":null,"url":null,"abstract":"The Active Inference framework models perception and action as a unified\nprocess, where agents use probabilistic models to predict and actively minimize\nsensory discrepancies. In complement and contrast, traditional population-based\nmetaheuristics rely on reactive environmental interactions without anticipatory\nadaptation. This paper proposes the integration of Active Inference into these\nmetaheuristics to enhance performance through anticipatory environmental\nadaptation. We demonstrate this approach specifically with Ant Colony\nOptimization (ACO) on the Travelling Salesman Problem (TSP). Experimental\nresults indicate that Active Inference can yield some improved solutions with\nonly a marginal increase in computational cost, with interesting patterns of\nperformance that relate to number and topology of nodes in the graph. Further\nwork will characterize where and when different types of Active Inference\naugmentation of population metaheuristics may be efficacious.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Population-based Search with Active Inference\",\"authors\":\"Nassim Dehouche, Daniel Friedman\",\"doi\":\"arxiv-2408.09548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Active Inference framework models perception and action as a unified\\nprocess, where agents use probabilistic models to predict and actively minimize\\nsensory discrepancies. In complement and contrast, traditional population-based\\nmetaheuristics rely on reactive environmental interactions without anticipatory\\nadaptation. This paper proposes the integration of Active Inference into these\\nmetaheuristics to enhance performance through anticipatory environmental\\nadaptation. We demonstrate this approach specifically with Ant Colony\\nOptimization (ACO) on the Travelling Salesman Problem (TSP). Experimental\\nresults indicate that Active Inference can yield some improved solutions with\\nonly a marginal increase in computational cost, with interesting patterns of\\nperformance that relate to number and topology of nodes in the graph. Further\\nwork will characterize where and when different types of Active Inference\\naugmentation of population metaheuristics may be efficacious.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主动推理(Active Inference)框架将感知和行动作为一个统一的过程进行建模,其中代理使用概率模型进行预测,并主动将感知差异最小化。与之形成互补和对比的是,传统的基于种群的元启发式算法依赖于被动的环境互动,而不具备预期适应能力。本文提出将 "主动推理"(Active Inference)集成到元启发式算法中,通过预期环境适应来提高性能。我们在旅行推销员问题(TSP)的蚁群优化(ACO)中具体演示了这种方法。实验结果表明,主动推理可以产生一些改进的解决方案,而计算成本仅略有增加,其性能模式与图中节点的数量和拓扑结构有关。进一步的工作将描述不同类型的主动推理对群体元启发式算法的增强在何时何地可能有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Population-based Search with Active Inference
The Active Inference framework models perception and action as a unified process, where agents use probabilistic models to predict and actively minimize sensory discrepancies. In complement and contrast, traditional population-based metaheuristics rely on reactive environmental interactions without anticipatory adaptation. This paper proposes the integration of Active Inference into these metaheuristics to enhance performance through anticipatory environmental adaptation. We demonstrate this approach specifically with Ant Colony Optimization (ACO) on the Travelling Salesman Problem (TSP). Experimental results indicate that Active Inference can yield some improved solutions with only a marginal increase in computational cost, with interesting patterns of performance that relate to number and topology of nodes in the graph. Further work will characterize where and when different types of Active Inference augmentation of population metaheuristics may be efficacious.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1