开发用于载荷监测的可锻奥氏体不锈钢材料传感器

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Engineering and Performance Pub Date : 2024-09-03 DOI:10.1007/s11665-024-09910-9
René Gansel, Christian Heinrich, Armin Lohrengel, Hans Jürgen Maier, Sebastian Barton
{"title":"开发用于载荷监测的可锻奥氏体不锈钢材料传感器","authors":"René Gansel, Christian Heinrich, Armin Lohrengel, Hans Jürgen Maier, Sebastian Barton","doi":"10.1007/s11665-024-09910-9","DOIUrl":null,"url":null,"abstract":"<p>Metastable stainless steels can be used as a load-sensitive sensor. In combination with an eddy current testing system, mechanical overloads of a component can be detected directly during operation. Material sensors were prepared by shot peening fatigue specimen of metastable austenitic steel to obtain a martensitic surface layer and a local heating by a laser beam to obtain an austenitic area in the layer. In order to investigate the response of the material sensor to overload and achieve different trigger thresholds, the thermal energy applied to create the sensor material and the geometry of the material sensors were varied. It is shown that the austenitized volume and the martensite fraction in the material sensor correlate with the phase of the eddy current signals. Starting from the martensitic surface layer, the phase decreases as the austenitized volume increases. If martensite formation takes place due to an overload, the phase increases as a result. To determine the threshold stress needed to trigger the material sensor, cyclic rotating bending tests were carried out on austenitic stainless steel 1.4301 (AISI 304). In step tests, the bending stress was gradually increased and subsequently ex-situ eddy current testing was carried out. The potential for predicting and classifying an overload is significantly greater with a higher applied thermal energy. Three different sensor geometries (rhombus, cross and ring) were employed in tests. In comparison, the rhombus-shaped material sensor provided the greatest potential for load history interpretation due to the significant phase change.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"23 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Material Sensors Made of Metastable Austenitic Stainless Steel for Load Monitoring\",\"authors\":\"René Gansel, Christian Heinrich, Armin Lohrengel, Hans Jürgen Maier, Sebastian Barton\",\"doi\":\"10.1007/s11665-024-09910-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metastable stainless steels can be used as a load-sensitive sensor. In combination with an eddy current testing system, mechanical overloads of a component can be detected directly during operation. Material sensors were prepared by shot peening fatigue specimen of metastable austenitic steel to obtain a martensitic surface layer and a local heating by a laser beam to obtain an austenitic area in the layer. In order to investigate the response of the material sensor to overload and achieve different trigger thresholds, the thermal energy applied to create the sensor material and the geometry of the material sensors were varied. It is shown that the austenitized volume and the martensite fraction in the material sensor correlate with the phase of the eddy current signals. Starting from the martensitic surface layer, the phase decreases as the austenitized volume increases. If martensite formation takes place due to an overload, the phase increases as a result. To determine the threshold stress needed to trigger the material sensor, cyclic rotating bending tests were carried out on austenitic stainless steel 1.4301 (AISI 304). In step tests, the bending stress was gradually increased and subsequently ex-situ eddy current testing was carried out. The potential for predicting and classifying an overload is significantly greater with a higher applied thermal energy. Three different sensor geometries (rhombus, cross and ring) were employed in tests. In comparison, the rhombus-shaped material sensor provided the greatest potential for load history interpretation due to the significant phase change.</p>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-09910-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-09910-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可变不锈钢可用作负载敏感传感器。与涡流检测系统结合使用,可在运行过程中直接检测部件的机械过载。材料传感器的制备方法是,对可变质奥氏体钢疲劳试样进行喷丸强化,以获得马氏体表层,并用激光束进行局部加热,以获得表层中的奥氏体区域。为了研究材料传感器对过载的响应并达到不同的触发阈值,我们改变了用于创建传感器材料的热能和材料传感器的几何形状。研究表明,材料传感器中的奥氏体化体积和马氏体分数与涡流信号的相位相关。从马氏体表层开始,相位随着奥氏体化体积的增加而降低。如果过载导致马氏体形成,则相位会随之增加。为了确定触发材料传感器所需的阈值应力,对奥氏体不锈钢 1.4301(AISI 304)进行了循环旋转弯曲试验。在阶跃试验中,弯曲应力逐渐增加,随后进行原位涡流测试。应用热能越高,预测和分类过载的潜力就越大。测试中采用了三种不同的传感器几何形状(菱形、十字形和环形)。相比之下,菱形材料传感器因其显著的相位变化而具有最大的负载历史解读潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Material Sensors Made of Metastable Austenitic Stainless Steel for Load Monitoring

Metastable stainless steels can be used as a load-sensitive sensor. In combination with an eddy current testing system, mechanical overloads of a component can be detected directly during operation. Material sensors were prepared by shot peening fatigue specimen of metastable austenitic steel to obtain a martensitic surface layer and a local heating by a laser beam to obtain an austenitic area in the layer. In order to investigate the response of the material sensor to overload and achieve different trigger thresholds, the thermal energy applied to create the sensor material and the geometry of the material sensors were varied. It is shown that the austenitized volume and the martensite fraction in the material sensor correlate with the phase of the eddy current signals. Starting from the martensitic surface layer, the phase decreases as the austenitized volume increases. If martensite formation takes place due to an overload, the phase increases as a result. To determine the threshold stress needed to trigger the material sensor, cyclic rotating bending tests were carried out on austenitic stainless steel 1.4301 (AISI 304). In step tests, the bending stress was gradually increased and subsequently ex-situ eddy current testing was carried out. The potential for predicting and classifying an overload is significantly greater with a higher applied thermal energy. Three different sensor geometries (rhombus, cross and ring) were employed in tests. In comparison, the rhombus-shaped material sensor provided the greatest potential for load history interpretation due to the significant phase change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Engineering and Performance
Journal of Materials Engineering and Performance 工程技术-材料科学:综合
CiteScore
3.90
自引率
13.00%
发文量
1120
审稿时长
4.9 months
期刊介绍: ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance. The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication. Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered
期刊最新文献
Effects of Retrogression and Re-aging (RRA) Processes on Corrosion Properties in AA 7020 Aluminium Alloy Synergistic Effect of Ex Situ and In Situ Reinforcements on the Dry Reciprocating Wear Behavior of AA6061-B4C Composite Fabricated Using Varying K2TiF6 Flux Content Effects of Ga Content on Microstructure Evolution and Mechanical Response of Heterostructured Dual-Phase Ag-49Cu Alloys Effect of Deep Cryogenic Treatment on the Mechanical Properties and Defect Tolerance of Selective-Laser-Melted 316L Stainless Steel Mechanical and Metallurgical Properties of Foam Developed by Friction Stir Tube Deposition Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1