TACOS:尖峰神经网络中与任务无关的持续学习

Nicholas Soures, Peter Helfer, Anurag Daram, Tej Pandit, Dhireesha Kudithipudi
{"title":"TACOS:尖峰神经网络中与任务无关的持续学习","authors":"Nicholas Soures, Peter Helfer, Anurag Daram, Tej Pandit, Dhireesha Kudithipudi","doi":"arxiv-2409.00021","DOIUrl":null,"url":null,"abstract":"Catastrophic interference, the loss of previously learned information when\nlearning new information, remains a major challenge in machine learning. Since\nliving organisms do not seem to suffer from this problem, researchers have\ntaken inspiration from biology to improve memory retention in artificial\nintelligence systems. However, previous attempts to use bio-inspired mechanisms\nhave typically resulted in systems that rely on task boundary information\nduring training and/or explicit task identification during inference,\ninformation that is not available in real-world scenarios. Here, we show that\nneuro-inspired mechanisms such as synaptic consolidation and metaplasticity can\nmitigate catastrophic interference in a spiking neural network, using only\nsynapse-local information, with no need for task awareness, and with a fixed\nmemory size that does not need to be increased when training on new tasks. Our\nmodel, TACOS, combines neuromodulation with complex synaptic dynamics to enable\nnew learning while protecting previous information. We evaluate TACOS on\nsequential image recognition tasks and demonstrate its effectiveness in\nreducing catastrophic interference. Our results show that TACOS outperforms\nexisting regularization techniques in domain-incremental learning scenarios. We\nalso report the results of an ablation study to elucidate the contribution of\neach neuro-inspired mechanism separately.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TACOS: Task Agnostic Continual Learning in Spiking Neural Networks\",\"authors\":\"Nicholas Soures, Peter Helfer, Anurag Daram, Tej Pandit, Dhireesha Kudithipudi\",\"doi\":\"arxiv-2409.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Catastrophic interference, the loss of previously learned information when\\nlearning new information, remains a major challenge in machine learning. Since\\nliving organisms do not seem to suffer from this problem, researchers have\\ntaken inspiration from biology to improve memory retention in artificial\\nintelligence systems. However, previous attempts to use bio-inspired mechanisms\\nhave typically resulted in systems that rely on task boundary information\\nduring training and/or explicit task identification during inference,\\ninformation that is not available in real-world scenarios. Here, we show that\\nneuro-inspired mechanisms such as synaptic consolidation and metaplasticity can\\nmitigate catastrophic interference in a spiking neural network, using only\\nsynapse-local information, with no need for task awareness, and with a fixed\\nmemory size that does not need to be increased when training on new tasks. Our\\nmodel, TACOS, combines neuromodulation with complex synaptic dynamics to enable\\nnew learning while protecting previous information. We evaluate TACOS on\\nsequential image recognition tasks and demonstrate its effectiveness in\\nreducing catastrophic interference. Our results show that TACOS outperforms\\nexisting regularization techniques in domain-incremental learning scenarios. We\\nalso report the results of an ablation study to elucidate the contribution of\\neach neuro-inspired mechanism separately.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

灾难性干扰,即在学习新信息时丢失以前学到的信息,仍然是机器学习中的一大挑战。生物似乎并不存在这个问题,因此研究人员从生物学中汲取灵感,改善人工智能系统的记忆保持能力。然而,以往使用生物启发机制的尝试通常会导致系统在训练过程中依赖于任务边界信息和/或在推理过程中依赖于明确的任务识别,而这些信息在现实世界中并不存在。在这里,我们展示了神经启发机制(如突触巩固和元弹性)可以缓解尖峰神经网络中的灾难性干扰,只需使用突触局部信息,无需任务感知,而且内存大小固定,在训练新任务时无需增加。我们的模型 TACOS 将神经调节与复杂的突触动态相结合,在保护先前信息的同时促进新的学习。我们在连续图像识别任务中对 TACOS 进行了评估,并证明了它在减少灾难性干扰方面的有效性。结果表明,TACOS 在领域递增学习场景中的表现优于现有的正则化技术。我们还报告了一项消融研究的结果,以分别阐明每种神经启发机制的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TACOS: Task Agnostic Continual Learning in Spiking Neural Networks
Catastrophic interference, the loss of previously learned information when learning new information, remains a major challenge in machine learning. Since living organisms do not seem to suffer from this problem, researchers have taken inspiration from biology to improve memory retention in artificial intelligence systems. However, previous attempts to use bio-inspired mechanisms have typically resulted in systems that rely on task boundary information during training and/or explicit task identification during inference, information that is not available in real-world scenarios. Here, we show that neuro-inspired mechanisms such as synaptic consolidation and metaplasticity can mitigate catastrophic interference in a spiking neural network, using only synapse-local information, with no need for task awareness, and with a fixed memory size that does not need to be increased when training on new tasks. Our model, TACOS, combines neuromodulation with complex synaptic dynamics to enable new learning while protecting previous information. We evaluate TACOS on sequential image recognition tasks and demonstrate its effectiveness in reducing catastrophic interference. Our results show that TACOS outperforms existing regularization techniques in domain-incremental learning scenarios. We also report the results of an ablation study to elucidate the contribution of each neuro-inspired mechanism separately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-Friendly Implementation of Physical Reservoir Computing with CMOS-based Time-domain Analog Spiking Neurons Self-Contrastive Forward-Forward Algorithm Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models PReLU: Yet Another Single-Layer Solution to the XOR Problem Inferno: An Extensible Framework for Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1