{"title":"采用原位聚合电解质的实用 SPAN|| 锂电池","authors":"Yawei Guo, Weijing Zuo, Xiangkun Wu, Lan Zhang","doi":"10.1016/j.mtener.2024.101662","DOIUrl":null,"url":null,"abstract":"Sulfurized polyacrylonitrile (SPAN) is a promising cathode material for long-life lithium-sulfur batteries (LSBs) due to its enhanced electronic conductivity as well as the eliminated shuttle effect. However, the uncontrollable lithium dendrite issue as well as slow kinetics of thick electrodes still hinders its practical application. Herein, an polymerized electrolyte (PGE) based on vinyl carbonate and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is designed and prepared to enhance the plating/stripping stability of the metal lithium while ensuring the cathode/electrolyte interfacial ion transportation. The optimized electrolyte, PGE-D, shows a satisfying ionic conductivity of 0.46 mS/cm at 25 °C; in the meantime, the polymer matrix hinders the diffusion of TFSI anion and results in a high Li transference number () of 0.73. Benefiting from the high affinity of the flowable PGE precursor to the thick SPAN cathode as well as enhanced lithium compatibility, the Li||SPAN battery with high areal loading of 14.1 mg/cm exhibits a high reversible specific capacity of 556.5 mAh/g and retains 76.3% of its capacity after 90 cycles.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"33 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical SPAN||Li cells enabled by insitu polymerized electrolyte\",\"authors\":\"Yawei Guo, Weijing Zuo, Xiangkun Wu, Lan Zhang\",\"doi\":\"10.1016/j.mtener.2024.101662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sulfurized polyacrylonitrile (SPAN) is a promising cathode material for long-life lithium-sulfur batteries (LSBs) due to its enhanced electronic conductivity as well as the eliminated shuttle effect. However, the uncontrollable lithium dendrite issue as well as slow kinetics of thick electrodes still hinders its practical application. Herein, an polymerized electrolyte (PGE) based on vinyl carbonate and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is designed and prepared to enhance the plating/stripping stability of the metal lithium while ensuring the cathode/electrolyte interfacial ion transportation. The optimized electrolyte, PGE-D, shows a satisfying ionic conductivity of 0.46 mS/cm at 25 °C; in the meantime, the polymer matrix hinders the diffusion of TFSI anion and results in a high Li transference number () of 0.73. Benefiting from the high affinity of the flowable PGE precursor to the thick SPAN cathode as well as enhanced lithium compatibility, the Li||SPAN battery with high areal loading of 14.1 mg/cm exhibits a high reversible specific capacity of 556.5 mAh/g and retains 76.3% of its capacity after 90 cycles.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101662\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101662","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Practical SPAN||Li cells enabled by insitu polymerized electrolyte
Sulfurized polyacrylonitrile (SPAN) is a promising cathode material for long-life lithium-sulfur batteries (LSBs) due to its enhanced electronic conductivity as well as the eliminated shuttle effect. However, the uncontrollable lithium dendrite issue as well as slow kinetics of thick electrodes still hinders its practical application. Herein, an polymerized electrolyte (PGE) based on vinyl carbonate and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is designed and prepared to enhance the plating/stripping stability of the metal lithium while ensuring the cathode/electrolyte interfacial ion transportation. The optimized electrolyte, PGE-D, shows a satisfying ionic conductivity of 0.46 mS/cm at 25 °C; in the meantime, the polymer matrix hinders the diffusion of TFSI anion and results in a high Li transference number () of 0.73. Benefiting from the high affinity of the flowable PGE precursor to the thick SPAN cathode as well as enhanced lithium compatibility, the Li||SPAN battery with high areal loading of 14.1 mg/cm exhibits a high reversible specific capacity of 556.5 mAh/g and retains 76.3% of its capacity after 90 cycles.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials