{"title":"调节线性聚乙烯亚胺的氧化度以制备高效低毒的可降解基因递送载体","authors":"Xiao-Ya Guo, Zhi-Yu Yang, Hua-Pan Fang, Dan-Hua Zhou, Xuan Pang, Hua-Yu Tian, Xue-Si Chen","doi":"10.1007/s10118-024-3171-z","DOIUrl":null,"url":null,"abstract":"<div><p>Polyethyleneimine (PEI), as a widely used polymer material in the field of gene delivery, has been extensively studied for modification and shielding to reduce its cytotoxicity. However, research aimed at preparing degradable PEI is scarce. In this work, the hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) oxidation method was used to introduce degradable amide groups in the PEI and a series of oxidized PEI22k (oxPEI22k) with different degrees of oxidation were synthesized by regulating the dosage of H<sub>2</sub>O<sub>2</sub>. The relationship between the oxidation degree of oxPEI22k and the gene transfection efficiency of oxPEI22k was studied in detail, confirming that the oxPEI22k with oxidation degrees of 16.7% and 28.6% achieved improved transfection efficiency compared to unmodified PEI. These oxPEI22k also proved reduced cytotoxicity and improved degradability. Further, this strategy was extended to the synthesis of low-molecular-weight oxPEI1.8k. The oxPEI1.8k with suitable oxidation degree also achieved improved transfection efficiency and reduced cytotoxicity. In brief, this work provided high-efficiency and low-cytotoxicity degradable gene delivery carriers by regulating the oxidation degree of PEI, which was of great significance for promoting clinical applications of PEI.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 11","pages":"1699 - 1709"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating the Oxidation Degree of Linear Polyethyleneimine for Preparation of Highly Efficient and Low-cytotoxicity Degradable Gene Delivery Carriers\",\"authors\":\"Xiao-Ya Guo, Zhi-Yu Yang, Hua-Pan Fang, Dan-Hua Zhou, Xuan Pang, Hua-Yu Tian, Xue-Si Chen\",\"doi\":\"10.1007/s10118-024-3171-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polyethyleneimine (PEI), as a widely used polymer material in the field of gene delivery, has been extensively studied for modification and shielding to reduce its cytotoxicity. However, research aimed at preparing degradable PEI is scarce. In this work, the hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) oxidation method was used to introduce degradable amide groups in the PEI and a series of oxidized PEI22k (oxPEI22k) with different degrees of oxidation were synthesized by regulating the dosage of H<sub>2</sub>O<sub>2</sub>. The relationship between the oxidation degree of oxPEI22k and the gene transfection efficiency of oxPEI22k was studied in detail, confirming that the oxPEI22k with oxidation degrees of 16.7% and 28.6% achieved improved transfection efficiency compared to unmodified PEI. These oxPEI22k also proved reduced cytotoxicity and improved degradability. Further, this strategy was extended to the synthesis of low-molecular-weight oxPEI1.8k. The oxPEI1.8k with suitable oxidation degree also achieved improved transfection efficiency and reduced cytotoxicity. In brief, this work provided high-efficiency and low-cytotoxicity degradable gene delivery carriers by regulating the oxidation degree of PEI, which was of great significance for promoting clinical applications of PEI.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"42 11\",\"pages\":\"1699 - 1709\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3171-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3171-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Modulating the Oxidation Degree of Linear Polyethyleneimine for Preparation of Highly Efficient and Low-cytotoxicity Degradable Gene Delivery Carriers
Polyethyleneimine (PEI), as a widely used polymer material in the field of gene delivery, has been extensively studied for modification and shielding to reduce its cytotoxicity. However, research aimed at preparing degradable PEI is scarce. In this work, the hydrogen peroxide (H2O2) oxidation method was used to introduce degradable amide groups in the PEI and a series of oxidized PEI22k (oxPEI22k) with different degrees of oxidation were synthesized by regulating the dosage of H2O2. The relationship between the oxidation degree of oxPEI22k and the gene transfection efficiency of oxPEI22k was studied in detail, confirming that the oxPEI22k with oxidation degrees of 16.7% and 28.6% achieved improved transfection efficiency compared to unmodified PEI. These oxPEI22k also proved reduced cytotoxicity and improved degradability. Further, this strategy was extended to the synthesis of low-molecular-weight oxPEI1.8k. The oxPEI1.8k with suitable oxidation degree also achieved improved transfection efficiency and reduced cytotoxicity. In brief, this work provided high-efficiency and low-cytotoxicity degradable gene delivery carriers by regulating the oxidation degree of PEI, which was of great significance for promoting clinical applications of PEI.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.