大气压下空气表面微放电等离子体产生的臭氧在气相和液相中的动力学和传输

IF 2.9 3区 物理与天体物理 Q2 PHYSICS, APPLIED Plasma Processes and Polymers Pub Date : 2024-08-28 DOI:10.1002/ppap.202400112
Zhiwei Wang, Chen Liu, Chunlei Feng, Cuizhen Wang, Longwei Chen, Hongbin Ding, Xiaoqian Cui
{"title":"大气压下空气表面微放电等离子体产生的臭氧在气相和液相中的动力学和传输","authors":"Zhiwei Wang, Chen Liu, Chunlei Feng, Cuizhen Wang, Longwei Chen, Hongbin Ding, Xiaoqian Cui","doi":"10.1002/ppap.202400112","DOIUrl":null,"url":null,"abstract":"This contribution focuses on the spatial‐temporal behavior and reactive pathways of O<jats:sub>3</jats:sub> produced by a surface air microdischarge in the gas and liquid phase using ultraviolet absorption spectroscopy. The findings demonstrate that mode transition from ozone to nitrogen oxide over time is observed at a constant input power higher than ~0.60 W/cm<jats:sup>2</jats:sup>. Due to the long‐lived characteristic and ionic wind, the perpendicular distribution of O<jats:sub>3</jats:sub> is almost uniform. The maximum penetration depth is around 5 mm, and the gas–liquid mass transfer efficiency is approximately 0.4‱ at a depth of 1 mm, when the treatment time is 10 min. The mass transfer of O<jats:sub>3</jats:sub> between gas and liquid phases is dominated by the liquid convention induced by ionic wind.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"51 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The dynamics and transport of ozone in the gas and liquid phase generated by air surface microdischarge plasma at atmospheric pressure\",\"authors\":\"Zhiwei Wang, Chen Liu, Chunlei Feng, Cuizhen Wang, Longwei Chen, Hongbin Ding, Xiaoqian Cui\",\"doi\":\"10.1002/ppap.202400112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution focuses on the spatial‐temporal behavior and reactive pathways of O<jats:sub>3</jats:sub> produced by a surface air microdischarge in the gas and liquid phase using ultraviolet absorption spectroscopy. The findings demonstrate that mode transition from ozone to nitrogen oxide over time is observed at a constant input power higher than ~0.60 W/cm<jats:sup>2</jats:sup>. Due to the long‐lived characteristic and ionic wind, the perpendicular distribution of O<jats:sub>3</jats:sub> is almost uniform. The maximum penetration depth is around 5 mm, and the gas–liquid mass transfer efficiency is approximately 0.4‱ at a depth of 1 mm, when the treatment time is 10 min. The mass transfer of O<jats:sub>3</jats:sub> between gas and liquid phases is dominated by the liquid convention induced by ionic wind.\",\"PeriodicalId\":20135,\"journal\":{\"name\":\"Plasma Processes and Polymers\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Processes and Polymers\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ppap.202400112\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400112","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

这篇论文利用紫外线吸收光谱学,重点研究了表面空气微放电在气相和液相中产生的臭氧的时空行为和反应途径。研究结果表明,当恒定输入功率高于 ~0.60 W/cm2 时,可观察到臭氧随时间向氧化氮的模式转变。由于臭氧的长寿命特性和离子风,O3 的垂直分布几乎是均匀的。最大穿透深度约为 5 毫米,当处理时间为 10 分钟时,1 毫米深度的气液传质效率约为 0.4‱。O3 在气相和液相之间的传质主要是由离子风引起的液体约定所主导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The dynamics and transport of ozone in the gas and liquid phase generated by air surface microdischarge plasma at atmospheric pressure
This contribution focuses on the spatial‐temporal behavior and reactive pathways of O3 produced by a surface air microdischarge in the gas and liquid phase using ultraviolet absorption spectroscopy. The findings demonstrate that mode transition from ozone to nitrogen oxide over time is observed at a constant input power higher than ~0.60 W/cm2. Due to the long‐lived characteristic and ionic wind, the perpendicular distribution of O3 is almost uniform. The maximum penetration depth is around 5 mm, and the gas–liquid mass transfer efficiency is approximately 0.4‱ at a depth of 1 mm, when the treatment time is 10 min. The mass transfer of O3 between gas and liquid phases is dominated by the liquid convention induced by ionic wind.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Processes and Polymers
Plasma Processes and Polymers 物理-高分子科学
CiteScore
6.60
自引率
11.40%
发文量
150
审稿时长
3 months
期刊介绍: Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.
期刊最新文献
Electrophoretic Deposition of Multi‐Walled Carbon Nanotubes: The Key Role of Plasma Functionalization and Polymerization Issue Information: Plasma Process. Polym. 9/2024 Outside Front Cover: Plasma Process. Polym. 9/2024 Effect of the pH on the Formation of Gold Nanoparticles Enabled by Plasma‐Driven Solution Electrochemistry Effects of cold atmospheric plasma‐treated medium on HaCaT and HUVEC cells in vitro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1