Mohammad Reza Lotfi, Pouria Akbar Tehrani, Mohammadreza Khani, Elahe Razaghiha, Erfan Ghasemi, Babak Shokri
{"title":"冷大气压氩等离子体射流的物理和化学诊断","authors":"Mohammad Reza Lotfi, Pouria Akbar Tehrani, Mohammadreza Khani, Elahe Razaghiha, Erfan Ghasemi, Babak Shokri","doi":"10.1002/ppap.202400077","DOIUrl":null,"url":null,"abstract":"This article presents an experimental investigation of an argon plasma jet. It examines a commercial argon plasma jet device's physical, chemical, and biological impacts, comparing findings against global standards. The study focuses on electrical features ensuring safety for patients and consumers, finding all leakage current values within established standards. Chemical analysis of emitted gases shows no detectable levels of harmful compounds near treated skin. Optical emission spectroscopy reveals bioactive compounds within the plasma jet. UV radiation emission remains within safety thresholds. Hyperspectral imaging shows temporary increases in skin characteristics posttreatment, reverting to baseline over time. Overall, the study demonstrates the safety and potential of the argon plasma jet in skin treatment.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"7 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical and chemical diagnostics of cold atmospheric pressure argon plasma jet\",\"authors\":\"Mohammad Reza Lotfi, Pouria Akbar Tehrani, Mohammadreza Khani, Elahe Razaghiha, Erfan Ghasemi, Babak Shokri\",\"doi\":\"10.1002/ppap.202400077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an experimental investigation of an argon plasma jet. It examines a commercial argon plasma jet device's physical, chemical, and biological impacts, comparing findings against global standards. The study focuses on electrical features ensuring safety for patients and consumers, finding all leakage current values within established standards. Chemical analysis of emitted gases shows no detectable levels of harmful compounds near treated skin. Optical emission spectroscopy reveals bioactive compounds within the plasma jet. UV radiation emission remains within safety thresholds. Hyperspectral imaging shows temporary increases in skin characteristics posttreatment, reverting to baseline over time. Overall, the study demonstrates the safety and potential of the argon plasma jet in skin treatment.\",\"PeriodicalId\":20135,\"journal\":{\"name\":\"Plasma Processes and Polymers\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Processes and Polymers\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ppap.202400077\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400077","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Physical and chemical diagnostics of cold atmospheric pressure argon plasma jet
This article presents an experimental investigation of an argon plasma jet. It examines a commercial argon plasma jet device's physical, chemical, and biological impacts, comparing findings against global standards. The study focuses on electrical features ensuring safety for patients and consumers, finding all leakage current values within established standards. Chemical analysis of emitted gases shows no detectable levels of harmful compounds near treated skin. Optical emission spectroscopy reveals bioactive compounds within the plasma jet. UV radiation emission remains within safety thresholds. Hyperspectral imaging shows temporary increases in skin characteristics posttreatment, reverting to baseline over time. Overall, the study demonstrates the safety and potential of the argon plasma jet in skin treatment.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.