{"title":"基于 Wigner-Yanase 偏斜信息的 N 量子信道的更严格不确定性关系","authors":"Quan Zhang, Xu Zheng, Qiong Guo","doi":"10.1088/1612-202x/ad7252","DOIUrl":null,"url":null,"abstract":"In this paper, we build some uncertainty relations for arbitrary <italic toggle=\"yes\">N</italic> quantum channels based on the Wigner–Yanase skew information. It is shown that our lower bounds are stronger than the ones proposed by Zhang <italic toggle=\"yes\">et al</italic> (2021 <italic toggle=\"yes\">Phys. Lett.</italic> A <bold>387</bold> 127029; 2021 <italic toggle=\"yes\">Laser Phys. Lett.</italic> <bold>18</bold> 095204) respectively in all intervals. In particular, we derive several uncertainty relations for <italic toggle=\"yes\">N</italic> unitary channels. Moreover, we establish several descending sequences of lower bounds for the uncertainty relations of <italic toggle=\"yes\">N</italic> quantum channels. Detailed examples are provided.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"9 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tighter uncertainty relations based on Wigner–Yanase skew information for N quantum channels\",\"authors\":\"Quan Zhang, Xu Zheng, Qiong Guo\",\"doi\":\"10.1088/1612-202x/ad7252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we build some uncertainty relations for arbitrary <italic toggle=\\\"yes\\\">N</italic> quantum channels based on the Wigner–Yanase skew information. It is shown that our lower bounds are stronger than the ones proposed by Zhang <italic toggle=\\\"yes\\\">et al</italic> (2021 <italic toggle=\\\"yes\\\">Phys. Lett.</italic> A <bold>387</bold> 127029; 2021 <italic toggle=\\\"yes\\\">Laser Phys. Lett.</italic> <bold>18</bold> 095204) respectively in all intervals. In particular, we derive several uncertainty relations for <italic toggle=\\\"yes\\\">N</italic> unitary channels. Moreover, we establish several descending sequences of lower bounds for the uncertainty relations of <italic toggle=\\\"yes\\\">N</italic> quantum channels. Detailed examples are provided.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad7252\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad7252","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
本文基于 Wigner-Yanase 偏斜信息,为任意 N 量子信道建立了一些不确定性关系。结果表明,我们的下界在所有区间都比 Zhang 等人提出的下界(2021 Phys.特别是,我们推导出了 N 个单元信道的若干不确定性关系。此外,我们还为 N 个量子信道的不确定性关系建立了若干降序下界。我们还提供了详细的例子。
Tighter uncertainty relations based on Wigner–Yanase skew information for N quantum channels
In this paper, we build some uncertainty relations for arbitrary N quantum channels based on the Wigner–Yanase skew information. It is shown that our lower bounds are stronger than the ones proposed by Zhang et al (2021 Phys. Lett. A 387 127029; 2021 Laser Phys. Lett.18 095204) respectively in all intervals. In particular, we derive several uncertainty relations for N unitary channels. Moreover, we establish several descending sequences of lower bounds for the uncertainty relations of N quantum channels. Detailed examples are provided.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics