基于神经网络的具有规定性能和输入饱和度的 2-DOF 直升机系统自适应有限时间控制

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent & Robotic Systems Pub Date : 2024-09-07 DOI:10.1007/s10846-024-02165-5
Hui Bi, Jian Zhang, Xiaowei Wang, Shuangyin Liu, Zhijia Zhao, Tao Zou
{"title":"基于神经网络的具有规定性能和输入饱和度的 2-DOF 直升机系统自适应有限时间控制","authors":"Hui Bi, Jian Zhang, Xiaowei Wang, Shuangyin Liu, Zhijia Zhao, Tao Zou","doi":"10.1007/s10846-024-02165-5","DOIUrl":null,"url":null,"abstract":"<p>In this study, we propose an adaptive neural network (NN) control approach for a 2-DOF helicopter system characterized by finite-time prescribed performance and input saturation. Initially, the NN is utilized to estimate the system’s uncertainty. Subsequently, a novel performance function with finite-time attributes is formulated to ensure that the system’s tracking error converges to a narrow margin within a predefined time span. Furthermore, adaptive parameters are integrated to address the inherent input saturation within the system. The boundedness of the system is then demonstrated through stability analysis employing the Lyapunov function. Finally, the effectiveness of the control strategy delineated in this investigation is validated through simulations and experiments.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"2011 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network-based Adaptive Finite-time Control for 2-DOF Helicopter Systems with Prescribed Performance and Input Saturation\",\"authors\":\"Hui Bi, Jian Zhang, Xiaowei Wang, Shuangyin Liu, Zhijia Zhao, Tao Zou\",\"doi\":\"10.1007/s10846-024-02165-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we propose an adaptive neural network (NN) control approach for a 2-DOF helicopter system characterized by finite-time prescribed performance and input saturation. Initially, the NN is utilized to estimate the system’s uncertainty. Subsequently, a novel performance function with finite-time attributes is formulated to ensure that the system’s tracking error converges to a narrow margin within a predefined time span. Furthermore, adaptive parameters are integrated to address the inherent input saturation within the system. The boundedness of the system is then demonstrated through stability analysis employing the Lyapunov function. Finally, the effectiveness of the control strategy delineated in this investigation is validated through simulations and experiments.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":\"2011 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02165-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02165-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了一种自适应神经网络(NN)控制方法,适用于以有限时间规定性能和输入饱和为特征的 2-DOF 直升机系统。首先,利用神经网络估计系统的不确定性。随后,制定了具有有限时间属性的新型性能函数,以确保系统的跟踪误差在预定的时间跨度内收敛到很小的范围。此外,还集成了自适应参数,以解决系统固有的输入饱和问题。然后,通过使用 Lyapunov 函数进行稳定性分析,证明了系统的有界性。最后,通过仿真和实验验证了本研究中描述的控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Network-based Adaptive Finite-time Control for 2-DOF Helicopter Systems with Prescribed Performance and Input Saturation

In this study, we propose an adaptive neural network (NN) control approach for a 2-DOF helicopter system characterized by finite-time prescribed performance and input saturation. Initially, the NN is utilized to estimate the system’s uncertainty. Subsequently, a novel performance function with finite-time attributes is formulated to ensure that the system’s tracking error converges to a narrow margin within a predefined time span. Furthermore, adaptive parameters are integrated to address the inherent input saturation within the system. The boundedness of the system is then demonstrated through stability analysis employing the Lyapunov function. Finally, the effectiveness of the control strategy delineated in this investigation is validated through simulations and experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
期刊最新文献
UAV Routing for Enhancing the Performance of a Classifier-in-the-loop DFT-VSLAM: A Dynamic Optical Flow Tracking VSLAM Method Design and Development of a Robust Control Platform for a 3-Finger Robotic Gripper Using EMG-Derived Hand Muscle Signals in NI LabVIEW Neural Network-based Adaptive Finite-time Control for 2-DOF Helicopter Systems with Prescribed Performance and Input Saturation Six-Degree-of-Freedom Pose Estimation Method for Multi-Source Feature Points Based on Fully Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1