{"title":"基于光谱聚类的水下定位系统误差迭代识别","authors":"Yu Lu, Jiongqi Wang, Zhangming He, Haiyin Zhou, Yao Xing, Xuanying Zhou","doi":"10.23919/jsee.2024.000069","DOIUrl":null,"url":null,"abstract":"The observation error model of the underwater acoustic positioning system is an important factor to influence the positioning accuracy of the underwater target. For the position inconsistency error caused by considering the underwater target as a mass point, as well as the observation system error, the traditional error model best estimation trajectory (EMBET) with little observed data and too many parameters can lead to the ill-condition of the parameter model. In this paper, a multi-station fusion system error model based on the optimal polynomial constraint is constructed, and the corresponding observation system error identification based on improved spectral clustering is designed. Firstly, the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization. Then a multi-station non-oriented graph network is established, which can address the problem of the inaccurate identification for the system errors. Moreover, the similarity matrix of the spectral clustering is improved, and the iterative identification for the system errors based on the improved spectral clustering is proposed. Finally, the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accurately identify the system errors, and moreover can improve the positioning accuracy for the underwater target positioning.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"13 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering\",\"authors\":\"Yu Lu, Jiongqi Wang, Zhangming He, Haiyin Zhou, Yao Xing, Xuanying Zhou\",\"doi\":\"10.23919/jsee.2024.000069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The observation error model of the underwater acoustic positioning system is an important factor to influence the positioning accuracy of the underwater target. For the position inconsistency error caused by considering the underwater target as a mass point, as well as the observation system error, the traditional error model best estimation trajectory (EMBET) with little observed data and too many parameters can lead to the ill-condition of the parameter model. In this paper, a multi-station fusion system error model based on the optimal polynomial constraint is constructed, and the corresponding observation system error identification based on improved spectral clustering is designed. Firstly, the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization. Then a multi-station non-oriented graph network is established, which can address the problem of the inaccurate identification for the system errors. Moreover, the similarity matrix of the spectral clustering is improved, and the iterative identification for the system errors based on the improved spectral clustering is proposed. Finally, the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accurately identify the system errors, and moreover can improve the positioning accuracy for the underwater target positioning.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jsee.2024.000069\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000069","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering
The observation error model of the underwater acoustic positioning system is an important factor to influence the positioning accuracy of the underwater target. For the position inconsistency error caused by considering the underwater target as a mass point, as well as the observation system error, the traditional error model best estimation trajectory (EMBET) with little observed data and too many parameters can lead to the ill-condition of the parameter model. In this paper, a multi-station fusion system error model based on the optimal polynomial constraint is constructed, and the corresponding observation system error identification based on improved spectral clustering is designed. Firstly, the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization. Then a multi-station non-oriented graph network is established, which can address the problem of the inaccurate identification for the system errors. Moreover, the similarity matrix of the spectral clustering is improved, and the iterative identification for the system errors based on the improved spectral clustering is proposed. Finally, the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accurately identify the system errors, and moreover can improve the positioning accuracy for the underwater target positioning.