天地一体化网络核心网容量预警

IF 1.9 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Systems Engineering and Electronics Pub Date : 2024-08-21 DOI:10.23919/jsee.2024.000072
Sai Han, Ao Li, Dongyue Zhang, Bin Zhu, Zelin Wang, Guangquan Wang, Jie Miao, Hongbing Ma
{"title":"天地一体化网络核心网容量预警","authors":"Sai Han, Ao Li, Dongyue Zhang, Bin Zhu, Zelin Wang, Guangquan Wang, Jie Miao, Hongbing Ma","doi":"10.23919/jsee.2024.000072","DOIUrl":null,"url":null,"abstract":"With the rapid development of low-orbit satellite communication networks both domestically and internationally, space-terrestrial integrated networks will become the future development trend. For space and terrestrial networks with limited resources, the utilization efficiency of the entire space-terrestrial integrated networks resources can be affected by the core network indirectly. In order to improve the response efficiency of core networks expansion construction, early warning of the core network elements capacity is necessary. Based on the integrated architecture of space and terrestrial network, multidimensional factors are considered in this paper, including the number of terminals, login users, and the rules of users' migration during holidays. Using artifical intelligence (AI) technologies, the registered users of the access and mobility management function (AMF), authorization users of the unified data management (UDM), protocol data unit (PDU) sessions of session management function (SMF) are predicted in combination with the number of login users, the number of terminals. Therefore, the core network elements capacity can be predicted in advance. The proposed method is proven to be effective based on the data from real network.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks\",\"authors\":\"Sai Han, Ao Li, Dongyue Zhang, Bin Zhu, Zelin Wang, Guangquan Wang, Jie Miao, Hongbing Ma\",\"doi\":\"10.23919/jsee.2024.000072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of low-orbit satellite communication networks both domestically and internationally, space-terrestrial integrated networks will become the future development trend. For space and terrestrial networks with limited resources, the utilization efficiency of the entire space-terrestrial integrated networks resources can be affected by the core network indirectly. In order to improve the response efficiency of core networks expansion construction, early warning of the core network elements capacity is necessary. Based on the integrated architecture of space and terrestrial network, multidimensional factors are considered in this paper, including the number of terminals, login users, and the rules of users' migration during holidays. Using artifical intelligence (AI) technologies, the registered users of the access and mobility management function (AMF), authorization users of the unified data management (UDM), protocol data unit (PDU) sessions of session management function (SMF) are predicted in combination with the number of login users, the number of terminals. Therefore, the core network elements capacity can be predicted in advance. The proposed method is proven to be effective based on the data from real network.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jsee.2024.000072\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000072","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着国内外低轨卫星通信网络的快速发展,空地一体化网络将成为未来的发展趋势。对于资源有限的空间和地面网络而言,核心网会间接影响整个空地一体化网络资源的利用效率。为了提高核心网扩容建设的响应效率,有必要对核心网网元容量进行预警。本文基于空地一体化网络架构,从终端数量、登录用户数、节假日用户迁移规律等多维度进行考虑。利用人工智能(AI)技术,结合登录用户数、终端数预测接入和移动管理功能(AMF)的注册用户、统一数据管理(UDM)的授权用户、会话管理功能(SMF)的协议数据单元(PDU)会话。因此,可以提前预测核心网元的容量。根据真实网络的数据,证明所提出的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks
With the rapid development of low-orbit satellite communication networks both domestically and internationally, space-terrestrial integrated networks will become the future development trend. For space and terrestrial networks with limited resources, the utilization efficiency of the entire space-terrestrial integrated networks resources can be affected by the core network indirectly. In order to improve the response efficiency of core networks expansion construction, early warning of the core network elements capacity is necessary. Based on the integrated architecture of space and terrestrial network, multidimensional factors are considered in this paper, including the number of terminals, login users, and the rules of users' migration during holidays. Using artifical intelligence (AI) technologies, the registered users of the access and mobility management function (AMF), authorization users of the unified data management (UDM), protocol data unit (PDU) sessions of session management function (SMF) are predicted in combination with the number of login users, the number of terminals. Therefore, the core network elements capacity can be predicted in advance. The proposed method is proven to be effective based on the data from real network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Systems Engineering and Electronics
Journal of Systems Engineering and Electronics 工程技术-工程:电子与电气
CiteScore
4.10
自引率
14.30%
发文量
131
审稿时长
7.5 months
期刊介绍: Information not localized
期刊最新文献
System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering Cloud Control for IIoT in a Cloud-Edge Environment Multi-Network-Region Traffic Cooperative Scheduling in Large-Scale LEO Satellite Networks Quantitative Method for Calculating Spatial Release Region for Laser-Guided Bomb Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1