强脉冲噪声下双稳态多输入多输出雷达的方向搜索

IF 1.9 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Systems Engineering and Electronics Pub Date : 2024-03-22 DOI:10.23919/jsee.2024.000002
Menghan Chen, Hongyuan Gao, Yanan Du, Jianhua Cheng, Yuze Zhang
{"title":"强脉冲噪声下双稳态多输入多输出雷达的方向搜索","authors":"Menghan Chen, Hongyuan Gao, Yanan Du, Jianhua Cheng, Yuze Zhang","doi":"10.23919/jsee.2024.000002","DOIUrl":null,"url":null,"abstract":"For bistatic multiple-input multiple-output (MIMO) radar, this paper presents a robust and direction finding method in strong impulse noise environment. By means of a new lower order covariance, the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood (ML) estimation method. A quantum equilibrium optimizer algorithm (QEOA) is devised to resolve the corresponding objective function for efficient and accurate direction finding. The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations, e.g., locating coherent signal sources with very few snapshots in strong impulse noise. Other than that, the Cramér-Rao bound (CRB) under impulse noise environment has been drawn to test the capability of the presented method.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"18 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direction Finding of Bistatic MIMO Radar in Strong Impulse Noise\",\"authors\":\"Menghan Chen, Hongyuan Gao, Yanan Du, Jianhua Cheng, Yuze Zhang\",\"doi\":\"10.23919/jsee.2024.000002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For bistatic multiple-input multiple-output (MIMO) radar, this paper presents a robust and direction finding method in strong impulse noise environment. By means of a new lower order covariance, the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood (ML) estimation method. A quantum equilibrium optimizer algorithm (QEOA) is devised to resolve the corresponding objective function for efficient and accurate direction finding. The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations, e.g., locating coherent signal sources with very few snapshots in strong impulse noise. Other than that, the Cramér-Rao bound (CRB) under impulse noise environment has been drawn to test the capability of the presented method.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jsee.2024.000002\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2024.000002","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对双稳态多输入多输出(MIMO)雷达,本文提出了一种强脉冲噪声环境下的鲁棒性测向方法。通过新的低阶协方差,该方法能有效抑制脉冲噪声,并利用最大似然(ML)估计方法实现卓越的测向性能。设计了一种量子平衡优化算法(QEOA)来解决相应的目标函数,从而实现高效、准确的测向。仿真结果表明,在不同的应用情况下,所提出的方法在成功率和均方根误差方面都优于现有的测向方法,例如在强脉冲噪声中用极少的快照定位相干信号源。此外,还得出了脉冲噪声环境下的 Cramér-Rao 约束(CRB),以检验该方法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direction Finding of Bistatic MIMO Radar in Strong Impulse Noise
For bistatic multiple-input multiple-output (MIMO) radar, this paper presents a robust and direction finding method in strong impulse noise environment. By means of a new lower order covariance, the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood (ML) estimation method. A quantum equilibrium optimizer algorithm (QEOA) is devised to resolve the corresponding objective function for efficient and accurate direction finding. The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations, e.g., locating coherent signal sources with very few snapshots in strong impulse noise. Other than that, the Cramér-Rao bound (CRB) under impulse noise environment has been drawn to test the capability of the presented method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Systems Engineering and Electronics
Journal of Systems Engineering and Electronics 工程技术-工程:电子与电气
CiteScore
4.10
自引率
14.30%
发文量
131
审稿时长
7.5 months
期刊介绍: Information not localized
期刊最新文献
System Error Iterative Identification for Underwater Positioning Based on Spectral Clustering Cloud Control for IIoT in a Cloud-Edge Environment Multi-Network-Region Traffic Cooperative Scheduling in Large-Scale LEO Satellite Networks Quantitative Method for Calculating Spatial Release Region for Laser-Guided Bomb Early Warning of Core Network Capacity in Space-Terrestrial Integrated Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1