风速剧烈波动期间中枢高度风资源参数的数值预测评估

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-09-13 DOI:10.3390/atmos15091112
Jingyue Mo, Yanbo Shen, Bin Yuan, Muyuan Li, Chenchen Ding, Beixi Jia, Dong Ye, Dan Wang
{"title":"风速剧烈波动期间中枢高度风资源参数的数值预测评估","authors":"Jingyue Mo, Yanbo Shen, Bin Yuan, Muyuan Li, Chenchen Ding, Beixi Jia, Dong Ye, Dan Wang","doi":"10.3390/atmos15091112","DOIUrl":null,"url":null,"abstract":"This study conducts a comprehensive evaluation of four scenario experiments using the CMA_WSP, WRF, and WRF_FITCH models to enhance forecasts of hub-height wind speeds at multiple wind farms in Northern China, particularly under significant wind speed fluctuations during high wind conditions. The experiments apply various wind speed calculation methods, including the Monin–Obukhov similarity theory (ST) and wind farm parameterization (WFP), within a 9 km resolution framework. Data from four geographically distinct stations were analyzed to assess their forecast accuracy over a 72 h period, focusing on the transitional wind events characterized by substantial fluctuations. The CMA_WSP model with the ST method (CMOST) achieved the highest scores across the evaluation metrics. Meanwhile, the WRF_FITCH model with the WFP method (FETA) demonstrated superior performance to the other WRF models, achieving the lowest RMSE and a greater stability. Nevertheless, all models encountered difficulties in predicting the exact timing of extreme wind events. This study also explores the effects of these methods on the wind power density (WPD) distribution, emphasizing the boundary layer’s influence at the hub-heighthub-height of 85 m. This influence leads to significant variations in the central and coastal regions. In contrast to other methods that account for the comprehensive effects of the entire boundary layer, the ST method primarily relies on the near-surface 10 m wind speed to calculate the hub-height wind speed. These findings provide important insights for enhancing wind speed and WPD forecasts under transitional weather conditions.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"2011 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Numerical Forecasts for Hub-Height Wind Resource Parameters during an Episode of Significant Wind Speed Fluctuations\",\"authors\":\"Jingyue Mo, Yanbo Shen, Bin Yuan, Muyuan Li, Chenchen Ding, Beixi Jia, Dong Ye, Dan Wang\",\"doi\":\"10.3390/atmos15091112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study conducts a comprehensive evaluation of four scenario experiments using the CMA_WSP, WRF, and WRF_FITCH models to enhance forecasts of hub-height wind speeds at multiple wind farms in Northern China, particularly under significant wind speed fluctuations during high wind conditions. The experiments apply various wind speed calculation methods, including the Monin–Obukhov similarity theory (ST) and wind farm parameterization (WFP), within a 9 km resolution framework. Data from four geographically distinct stations were analyzed to assess their forecast accuracy over a 72 h period, focusing on the transitional wind events characterized by substantial fluctuations. The CMA_WSP model with the ST method (CMOST) achieved the highest scores across the evaluation metrics. Meanwhile, the WRF_FITCH model with the WFP method (FETA) demonstrated superior performance to the other WRF models, achieving the lowest RMSE and a greater stability. Nevertheless, all models encountered difficulties in predicting the exact timing of extreme wind events. This study also explores the effects of these methods on the wind power density (WPD) distribution, emphasizing the boundary layer’s influence at the hub-heighthub-height of 85 m. This influence leads to significant variations in the central and coastal regions. In contrast to other methods that account for the comprehensive effects of the entire boundary layer, the ST method primarily relies on the near-surface 10 m wind speed to calculate the hub-height wind speed. These findings provide important insights for enhancing wind speed and WPD forecasts under transitional weather conditions.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"2011 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15091112\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091112","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用 CMA_WSP、WRF 和 WRF_FITCH 三种模式对四种情景试验进行了综合评估,以增强对华北地区多个风电场轮毂高度风速的预报,特别是在大风条件下风速大幅波动的情况下。实验在 9 千米分辨率框架内应用了多种风速计算方法,包括莫宁-奥布霍夫相似理论(ST)和风电场参数化(WFP)。对四个地理位置不同的站点的数据进行了分析,以评估它们在 72 小时内的预报准确性,重点是以大幅波动为特征的过渡风事件。采用 ST 方法(CMOST)的 CMA_WSP 模式在所有评估指标中得分最高。同时,采用 WFP 方法的 WRF_FITCH 模型(FETA)表现出优于其他 WRF 模型的性能,实现了最低的均方根误差和更高的稳定性。然而,所有模式在预测极端风事件的准确时间方面都遇到了困难。本研究还探讨了这些方法对风功率密度(WPD)分布的影响,强调了边界层在枢纽-枢纽-85 米高度的影响。与其他考虑整个边界层综合影响的方法相比,ST 方法主要依靠近地面 10 米风速来计算轮毂高度风速。这些发现为加强过渡天气条件下的风速和 WPD 预报提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of Numerical Forecasts for Hub-Height Wind Resource Parameters during an Episode of Significant Wind Speed Fluctuations
This study conducts a comprehensive evaluation of four scenario experiments using the CMA_WSP, WRF, and WRF_FITCH models to enhance forecasts of hub-height wind speeds at multiple wind farms in Northern China, particularly under significant wind speed fluctuations during high wind conditions. The experiments apply various wind speed calculation methods, including the Monin–Obukhov similarity theory (ST) and wind farm parameterization (WFP), within a 9 km resolution framework. Data from four geographically distinct stations were analyzed to assess their forecast accuracy over a 72 h period, focusing on the transitional wind events characterized by substantial fluctuations. The CMA_WSP model with the ST method (CMOST) achieved the highest scores across the evaluation metrics. Meanwhile, the WRF_FITCH model with the WFP method (FETA) demonstrated superior performance to the other WRF models, achieving the lowest RMSE and a greater stability. Nevertheless, all models encountered difficulties in predicting the exact timing of extreme wind events. This study also explores the effects of these methods on the wind power density (WPD) distribution, emphasizing the boundary layer’s influence at the hub-heighthub-height of 85 m. This influence leads to significant variations in the central and coastal regions. In contrast to other methods that account for the comprehensive effects of the entire boundary layer, the ST method primarily relies on the near-surface 10 m wind speed to calculate the hub-height wind speed. These findings provide important insights for enhancing wind speed and WPD forecasts under transitional weather conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1