MSLKSTNet:用于气温预测的多尺度大核时空预测神经网络

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-09-13 DOI:10.3390/atmos15091114
Feng Gao, Jiaen Fei, Yuankang Ye, Chang Liu
{"title":"MSLKSTNet:用于气温预测的多尺度大核时空预测神经网络","authors":"Feng Gao, Jiaen Fei, Yuankang Ye, Chang Liu","doi":"10.3390/atmos15091114","DOIUrl":null,"url":null,"abstract":"The spatiotemporal forecasting of temperature is a critical issue in meteorological prediction, with significant implications for fields such as agriculture and energy. With the rapid advancement of data-driven deep learning methods, deep learning-based spatiotemporal sequence forecasting models have seen widespread application in temperature spatiotemporal forecasting. However, statistical analysis reveals that temperature evolution varies across temporal and spatial scales due to factors like terrain, leading to a lack of existing temperature prediction models that can simultaneously learn both large-scale global features and small to medium-scale local features over time. To uniformly model temperature variations across different temporal and spatial scales, we propose the Multi-Scale Large Kernel Spatiotemporal Attention Neural Network (MSLKSTNet). This model consists of three main modules: a feature encoder, a multi-scale spatiotemporal translator, and a feature decoder. The core module of this network, Multi-scale Spatiotemporal Attention (MSSTA), decomposes large kernel convolutions from multi-scale perspectives, capturing spatial feature information at different scales, and focuses on the evolution of multi-scale spatial features over time, encompassing both global smooth changes and local abrupt changes. The results demonstrate that MSLKSTNet achieves superior performance, with a 35% improvement in the MSE metric compared to SimVP. Ablation studies confirmed the significance of the MSSTA unit for spatiotemporal forecasting tasks. We apply the model to the regional ERA5-Land reanalysis temperature dataset, and the experimental results indicate that the proposed method delivers the best forecasting performance, achieving a 42% improvement in the MSE metric over the widely used ConvLSTM model for temperature prediction. This validates the effectiveness and superiority of MSLKSTNet in temperature forecasting tasks.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"23 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSLKSTNet: Multi-Scale Large Kernel Spatiotemporal Prediction Neural Network for Air Temperature Prediction\",\"authors\":\"Feng Gao, Jiaen Fei, Yuankang Ye, Chang Liu\",\"doi\":\"10.3390/atmos15091114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spatiotemporal forecasting of temperature is a critical issue in meteorological prediction, with significant implications for fields such as agriculture and energy. With the rapid advancement of data-driven deep learning methods, deep learning-based spatiotemporal sequence forecasting models have seen widespread application in temperature spatiotemporal forecasting. However, statistical analysis reveals that temperature evolution varies across temporal and spatial scales due to factors like terrain, leading to a lack of existing temperature prediction models that can simultaneously learn both large-scale global features and small to medium-scale local features over time. To uniformly model temperature variations across different temporal and spatial scales, we propose the Multi-Scale Large Kernel Spatiotemporal Attention Neural Network (MSLKSTNet). This model consists of three main modules: a feature encoder, a multi-scale spatiotemporal translator, and a feature decoder. The core module of this network, Multi-scale Spatiotemporal Attention (MSSTA), decomposes large kernel convolutions from multi-scale perspectives, capturing spatial feature information at different scales, and focuses on the evolution of multi-scale spatial features over time, encompassing both global smooth changes and local abrupt changes. The results demonstrate that MSLKSTNet achieves superior performance, with a 35% improvement in the MSE metric compared to SimVP. Ablation studies confirmed the significance of the MSSTA unit for spatiotemporal forecasting tasks. We apply the model to the regional ERA5-Land reanalysis temperature dataset, and the experimental results indicate that the proposed method delivers the best forecasting performance, achieving a 42% improvement in the MSE metric over the widely used ConvLSTM model for temperature prediction. This validates the effectiveness and superiority of MSLKSTNet in temperature forecasting tasks.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15091114\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091114","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

气温的时空预报是气象预报中的一个关键问题,对农业和能源等领域具有重要影响。随着数据驱动型深度学习方法的快速发展,基于深度学习的时空序列预报模型在气温时空预报中得到了广泛应用。然而,统计分析发现,由于地形等因素的影响,气温在不同时空尺度上的变化各不相同,导致现有的气温预测模型缺乏能同时学习大尺度全局特征和中小尺度局部特征的随时间变化的模型。为了对不同时空尺度的气温变化进行统一建模,我们提出了多尺度大核时空注意力神经网络(MSLKSTNet)。该模型由三个主要模块组成:特征编码器、多尺度时空翻译器和特征解码器。该网络的核心模块 "多尺度时空关注(MSSTA)"从多尺度角度分解大核卷积,捕捉不同尺度的空间特征信息,并关注多尺度空间特征随时间的演变,包括全局平滑变化和局部突变。研究结果表明,MSLKSTNet 性能优越,与 SimVP 相比,MSE 指标提高了 35%。消融研究证实了 MSSTA 单元在时空预测任务中的重要性。我们将该模型应用于区域ERA5-Land再分析气温数据集,实验结果表明,所提出的方法具有最佳的预报性能,与广泛应用于气温预测的ConvLSTM模型相比,MSE指标提高了42%。这验证了 MSLKSTNet 在气温预报任务中的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MSLKSTNet: Multi-Scale Large Kernel Spatiotemporal Prediction Neural Network for Air Temperature Prediction
The spatiotemporal forecasting of temperature is a critical issue in meteorological prediction, with significant implications for fields such as agriculture and energy. With the rapid advancement of data-driven deep learning methods, deep learning-based spatiotemporal sequence forecasting models have seen widespread application in temperature spatiotemporal forecasting. However, statistical analysis reveals that temperature evolution varies across temporal and spatial scales due to factors like terrain, leading to a lack of existing temperature prediction models that can simultaneously learn both large-scale global features and small to medium-scale local features over time. To uniformly model temperature variations across different temporal and spatial scales, we propose the Multi-Scale Large Kernel Spatiotemporal Attention Neural Network (MSLKSTNet). This model consists of three main modules: a feature encoder, a multi-scale spatiotemporal translator, and a feature decoder. The core module of this network, Multi-scale Spatiotemporal Attention (MSSTA), decomposes large kernel convolutions from multi-scale perspectives, capturing spatial feature information at different scales, and focuses on the evolution of multi-scale spatial features over time, encompassing both global smooth changes and local abrupt changes. The results demonstrate that MSLKSTNet achieves superior performance, with a 35% improvement in the MSE metric compared to SimVP. Ablation studies confirmed the significance of the MSSTA unit for spatiotemporal forecasting tasks. We apply the model to the regional ERA5-Land reanalysis temperature dataset, and the experimental results indicate that the proposed method delivers the best forecasting performance, achieving a 42% improvement in the MSE metric over the widely used ConvLSTM model for temperature prediction. This validates the effectiveness and superiority of MSLKSTNet in temperature forecasting tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1