城市地区的空气质量保护--案例研究

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-09-11 DOI:10.3390/atmos15091106
Zbigniew Nahorski, Piotr Holnicki, Andrzej Kałuszko
{"title":"城市地区的空气质量保护--案例研究","authors":"Zbigniew Nahorski, Piotr Holnicki, Andrzej Kałuszko","doi":"10.3390/atmos15091106","DOIUrl":null,"url":null,"abstract":"Warsaw is among European cities with the worst atmospheric air quality, mainly due to very high pollution emitted by the residential sector and road traffic. This results in high concentrations of particulate matter and nitrogen oxides, often exceeding WHO standards. The paper discusses the current and expected effects of actions taken by the Warsaw authorities, to significantly improve air quality in the city. The policy directly addresses one of the UN Sustainable Development Goals (SDG 11, Sustainable Cities and Communities). The analysis presented in the paper consists of two stages. The first, covering the years 2018–2029, deals with the ongoing Clean Air Program, which assumes primarily the reduction, and ultimately the complete elimination, of coal combustion in all heat sources of the residential sector. This sector is widely identified as the main source of urban air quality degradation, especially in Polish cities due to the dominant share of coal in the fuel mix. The second part of the corrective measures, covering the period 2024–2034, primarily concerns the reduction of nitrogen oxide pollution, mainly from traffic. The latter takes into account the expected effects of the introduction of a Low-emission Zone (LEZ) in the city center (launched in July 2024) and implemented in five two-year stages, in which car emission limits will be gradually tightened. According to the analysis results, the implementation of the Clean Air Program can result in about a 20% reduction in annual average PM2.5 concentrations by 2024, with a small (about 9%) reduction in NOx. At the same time, a significant reduction in NOx levels can be achieved by full implementation of the LEZ, especially within the zone boundaries (more than 50%). An important factor here is the size of the zone. The paper compares the effectiveness of two being considered versions, differing in size zones.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"9 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Air Quality Protection in an Urban Area—Case Study\",\"authors\":\"Zbigniew Nahorski, Piotr Holnicki, Andrzej Kałuszko\",\"doi\":\"10.3390/atmos15091106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Warsaw is among European cities with the worst atmospheric air quality, mainly due to very high pollution emitted by the residential sector and road traffic. This results in high concentrations of particulate matter and nitrogen oxides, often exceeding WHO standards. The paper discusses the current and expected effects of actions taken by the Warsaw authorities, to significantly improve air quality in the city. The policy directly addresses one of the UN Sustainable Development Goals (SDG 11, Sustainable Cities and Communities). The analysis presented in the paper consists of two stages. The first, covering the years 2018–2029, deals with the ongoing Clean Air Program, which assumes primarily the reduction, and ultimately the complete elimination, of coal combustion in all heat sources of the residential sector. This sector is widely identified as the main source of urban air quality degradation, especially in Polish cities due to the dominant share of coal in the fuel mix. The second part of the corrective measures, covering the period 2024–2034, primarily concerns the reduction of nitrogen oxide pollution, mainly from traffic. The latter takes into account the expected effects of the introduction of a Low-emission Zone (LEZ) in the city center (launched in July 2024) and implemented in five two-year stages, in which car emission limits will be gradually tightened. According to the analysis results, the implementation of the Clean Air Program can result in about a 20% reduction in annual average PM2.5 concentrations by 2024, with a small (about 9%) reduction in NOx. At the same time, a significant reduction in NOx levels can be achieved by full implementation of the LEZ, especially within the zone boundaries (more than 50%). An important factor here is the size of the zone. The paper compares the effectiveness of two being considered versions, differing in size zones.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15091106\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091106","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

华沙是欧洲大气空气质量最差的城市之一,主要原因是居民区和道路交通排放的污染非常严重。这导致颗粒物和氮氧化物浓度很高,经常超过世界卫生组织的标准。本文讨论了华沙当局为显著改善城市空气质量而采取的行动的当前效果和预期效果。该政策直接涉及联合国可持续发展目标之一(SDG 11,可持续城市和社区)。本文的分析包括两个阶段。第一阶段涵盖 2018-2029 年,涉及正在实施的 "清洁空气计划",该计划主要假定减少并最终完全消除住宅部门所有热源的燃煤量。该部门被广泛认为是城市空气质量恶化的主要来源,尤其是在波兰城市,因为煤炭在燃料组合中占主导地位。纠正措施的第二部分涵盖 2024-2034 年,主要涉及减少氮氧化物污染,主要是交通污染。后者考虑了在市中心引入低排放区(LEZ)(2024 年 7 月启动)的预期效果,分五个两年阶段实施,其中汽车尾气排放限制将逐步收紧。根据分析结果,到 2024 年,实施 "清洁空气计划 "可使 PM2.5 的年均浓度降低约 20%,氮氧化物的降幅较小(约 9%)。同时,通过全面实施低排放区,尤其是在低排放区范围内(超过 50%),可以大幅降低氮氧化物水平。这里的一个重要因素是低排放区的面积。本文比较了两个正在考虑的版本的有效性,它们在区域大小上有所不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Air Quality Protection in an Urban Area—Case Study
Warsaw is among European cities with the worst atmospheric air quality, mainly due to very high pollution emitted by the residential sector and road traffic. This results in high concentrations of particulate matter and nitrogen oxides, often exceeding WHO standards. The paper discusses the current and expected effects of actions taken by the Warsaw authorities, to significantly improve air quality in the city. The policy directly addresses one of the UN Sustainable Development Goals (SDG 11, Sustainable Cities and Communities). The analysis presented in the paper consists of two stages. The first, covering the years 2018–2029, deals with the ongoing Clean Air Program, which assumes primarily the reduction, and ultimately the complete elimination, of coal combustion in all heat sources of the residential sector. This sector is widely identified as the main source of urban air quality degradation, especially in Polish cities due to the dominant share of coal in the fuel mix. The second part of the corrective measures, covering the period 2024–2034, primarily concerns the reduction of nitrogen oxide pollution, mainly from traffic. The latter takes into account the expected effects of the introduction of a Low-emission Zone (LEZ) in the city center (launched in July 2024) and implemented in five two-year stages, in which car emission limits will be gradually tightened. According to the analysis results, the implementation of the Clean Air Program can result in about a 20% reduction in annual average PM2.5 concentrations by 2024, with a small (about 9%) reduction in NOx. At the same time, a significant reduction in NOx levels can be achieved by full implementation of the LEZ, especially within the zone boundaries (more than 50%). An important factor here is the size of the zone. The paper compares the effectiveness of two being considered versions, differing in size zones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1