三江平原极端冷暖事件协同变化研究

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-09-08 DOI:10.3390/atmos15091092
Baoqi Li, Yanyu Chi, Hang Zhou, Shaoxiong Zhang, Yao Lu
{"title":"三江平原极端冷暖事件协同变化研究","authors":"Baoqi Li, Yanyu Chi, Hang Zhou, Shaoxiong Zhang, Yao Lu","doi":"10.3390/atmos15091092","DOIUrl":null,"url":null,"abstract":"Extreme climate events are occurring frequently under global warming. Previous studies primarily focused on isolated extreme climate events, whereas research on the synergistic changes between extreme cold (EC) and extreme warm (EW) events remains limited. This study conducted trend, correlation, and dispersion analyses on EC and EW, as well as their synergistic changes, in the Sanjiang Plain from 1960 to 2019, using inverse distance weighting, statistical methods, and the Mann–Kendall test. The results indicated that cold-to-warm (C2W) and warm-to-cold (W2C) events were significantly and positively correlated with elevation, with correlation coefficients (r) of 0.76 and 0.84, respectively. Meanwhile, C2W showed a significant negative correlation with latitude (r = −0.55), while W2C also exhibited a significant negative correlation with latitude (r = −0.71). However, there was a significant positive correlation between (EC) and latitude (r = 0.65). After 1980, both the declining trend of EC and the increasing trend of EW slowed down, and the trends in C2W and W2C changed from decline to increase. The dispersion of EC and EW shows an increasing trend, while the dispersion of C2W and W2C exhibits a decreasing trend. This study provides important references for studying temperature fluctuations and addressing extreme climate changes.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"13 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Study of Synergistic Changes in Extreme Cold and Warm Events in the Sanjiang Plain\",\"authors\":\"Baoqi Li, Yanyu Chi, Hang Zhou, Shaoxiong Zhang, Yao Lu\",\"doi\":\"10.3390/atmos15091092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme climate events are occurring frequently under global warming. Previous studies primarily focused on isolated extreme climate events, whereas research on the synergistic changes between extreme cold (EC) and extreme warm (EW) events remains limited. This study conducted trend, correlation, and dispersion analyses on EC and EW, as well as their synergistic changes, in the Sanjiang Plain from 1960 to 2019, using inverse distance weighting, statistical methods, and the Mann–Kendall test. The results indicated that cold-to-warm (C2W) and warm-to-cold (W2C) events were significantly and positively correlated with elevation, with correlation coefficients (r) of 0.76 and 0.84, respectively. Meanwhile, C2W showed a significant negative correlation with latitude (r = −0.55), while W2C also exhibited a significant negative correlation with latitude (r = −0.71). However, there was a significant positive correlation between (EC) and latitude (r = 0.65). After 1980, both the declining trend of EC and the increasing trend of EW slowed down, and the trends in C2W and W2C changed from decline to increase. The dispersion of EC and EW shows an increasing trend, while the dispersion of C2W and W2C exhibits a decreasing trend. This study provides important references for studying temperature fluctuations and addressing extreme climate changes.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15091092\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091092","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全球变暖导致极端气候事件频发。以往的研究主要集中于孤立的极端气候事件,而对极端寒冷(EC)和极端温暖(EW)事件之间协同变化的研究仍然有限。本研究采用反距离加权、统计方法和 Mann-Kendall 检验等方法,对 1960 年至 2019 年三江平原的极寒和极暖事件及其协同变化进行了趋势、相关性和离散性分析。结果表明,冷暖(C2W)和冷暖(W2C)事件与海拔呈显著正相关,相关系数(r)分别为 0.76 和 0.84。同时,C2W 与纬度呈显著负相关(r = -0.55),而 W2C 也与纬度呈显著负相关(r = -0.71)。不过,(EC)与纬度呈明显的正相关(r = 0.65)。1980 年以后,EC 的下降趋势和 EW 的上升趋势均放缓,C2W 和 W2C 的趋势由下降转为上升。EC 和 EW 的离散度呈上升趋势,而 C2W 和 W2C 的离散度呈下降趋势。这项研究为研究温度波动和应对极端气候变化提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Study of Synergistic Changes in Extreme Cold and Warm Events in the Sanjiang Plain
Extreme climate events are occurring frequently under global warming. Previous studies primarily focused on isolated extreme climate events, whereas research on the synergistic changes between extreme cold (EC) and extreme warm (EW) events remains limited. This study conducted trend, correlation, and dispersion analyses on EC and EW, as well as their synergistic changes, in the Sanjiang Plain from 1960 to 2019, using inverse distance weighting, statistical methods, and the Mann–Kendall test. The results indicated that cold-to-warm (C2W) and warm-to-cold (W2C) events were significantly and positively correlated with elevation, with correlation coefficients (r) of 0.76 and 0.84, respectively. Meanwhile, C2W showed a significant negative correlation with latitude (r = −0.55), while W2C also exhibited a significant negative correlation with latitude (r = −0.71). However, there was a significant positive correlation between (EC) and latitude (r = 0.65). After 1980, both the declining trend of EC and the increasing trend of EW slowed down, and the trends in C2W and W2C changed from decline to increase. The dispersion of EC and EW shows an increasing trend, while the dispersion of C2W and W2C exhibits a decreasing trend. This study provides important references for studying temperature fluctuations and addressing extreme climate changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1