Sudheer Bhakare, Sara Dal Gesso, Marco Venturini, Dino Zardi, Laura Trentini, Michael Matiu, Marcello Petitta
{"title":"复杂地形中每日平均气温空间降尺度机器学习模型的相互比较","authors":"Sudheer Bhakare, Sara Dal Gesso, Marco Venturini, Dino Zardi, Laura Trentini, Michael Matiu, Marcello Petitta","doi":"10.3390/atmos15091085","DOIUrl":null,"url":null,"abstract":"We compare three machine learning models—artificial neural network (ANN), random forest (RF), and convolutional neural network (CNN)—for spatial downscaling of temperature at 2 m above ground (T2M) from a 9 km ERA5-Land reanalysis to 1 km in a complex terrain area, including the Non Valley and the Adige Valley in the Italian Alps. The results suggest that CNN performs better than the other methods across all seasons. RF performs similar to CNN, particularly in spring and summer, but its performance is reduced in winter and autumn. The best performance was observed in summer for CNN (R2 = 0.94, RMSE = 1 °C, MAE = 0.78 °C) and the lowest in winter for ANN (R2 = 0.79, RMSE = 1.6 °C, MAE = 1.3 °C). Elevation is an important predictor for ANN and RF, whereas it does not play a significant role for CNN. Additionally, CNN outperforms others even without elevation as an additional feature. Furthermore, MAE increases with higher elevation for ANN across all seasons. Conversely, MAE decreases with increased elevation for RF and CNN, particularly for summer, and remains mostly stable for other seasons.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"39 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercomparison of Machine Learning Models for Spatial Downscaling of Daily Mean Temperature in Complex Terrain\",\"authors\":\"Sudheer Bhakare, Sara Dal Gesso, Marco Venturini, Dino Zardi, Laura Trentini, Michael Matiu, Marcello Petitta\",\"doi\":\"10.3390/atmos15091085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare three machine learning models—artificial neural network (ANN), random forest (RF), and convolutional neural network (CNN)—for spatial downscaling of temperature at 2 m above ground (T2M) from a 9 km ERA5-Land reanalysis to 1 km in a complex terrain area, including the Non Valley and the Adige Valley in the Italian Alps. The results suggest that CNN performs better than the other methods across all seasons. RF performs similar to CNN, particularly in spring and summer, but its performance is reduced in winter and autumn. The best performance was observed in summer for CNN (R2 = 0.94, RMSE = 1 °C, MAE = 0.78 °C) and the lowest in winter for ANN (R2 = 0.79, RMSE = 1.6 °C, MAE = 1.3 °C). Elevation is an important predictor for ANN and RF, whereas it does not play a significant role for CNN. Additionally, CNN outperforms others even without elevation as an additional feature. Furthermore, MAE increases with higher elevation for ANN across all seasons. Conversely, MAE decreases with increased elevation for RF and CNN, particularly for summer, and remains mostly stable for other seasons.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15091085\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091085","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Intercomparison of Machine Learning Models for Spatial Downscaling of Daily Mean Temperature in Complex Terrain
We compare three machine learning models—artificial neural network (ANN), random forest (RF), and convolutional neural network (CNN)—for spatial downscaling of temperature at 2 m above ground (T2M) from a 9 km ERA5-Land reanalysis to 1 km in a complex terrain area, including the Non Valley and the Adige Valley in the Italian Alps. The results suggest that CNN performs better than the other methods across all seasons. RF performs similar to CNN, particularly in spring and summer, but its performance is reduced in winter and autumn. The best performance was observed in summer for CNN (R2 = 0.94, RMSE = 1 °C, MAE = 0.78 °C) and the lowest in winter for ANN (R2 = 0.79, RMSE = 1.6 °C, MAE = 1.3 °C). Elevation is an important predictor for ANN and RF, whereas it does not play a significant role for CNN. Additionally, CNN outperforms others even without elevation as an additional feature. Furthermore, MAE increases with higher elevation for ANN across all seasons. Conversely, MAE decreases with increased elevation for RF and CNN, particularly for summer, and remains mostly stable for other seasons.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.