复杂地形中每日平均气温空间降尺度机器学习模型的相互比较

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-09-07 DOI:10.3390/atmos15091085
Sudheer Bhakare, Sara Dal Gesso, Marco Venturini, Dino Zardi, Laura Trentini, Michael Matiu, Marcello Petitta
{"title":"复杂地形中每日平均气温空间降尺度机器学习模型的相互比较","authors":"Sudheer Bhakare, Sara Dal Gesso, Marco Venturini, Dino Zardi, Laura Trentini, Michael Matiu, Marcello Petitta","doi":"10.3390/atmos15091085","DOIUrl":null,"url":null,"abstract":"We compare three machine learning models—artificial neural network (ANN), random forest (RF), and convolutional neural network (CNN)—for spatial downscaling of temperature at 2 m above ground (T2M) from a 9 km ERA5-Land reanalysis to 1 km in a complex terrain area, including the Non Valley and the Adige Valley in the Italian Alps. The results suggest that CNN performs better than the other methods across all seasons. RF performs similar to CNN, particularly in spring and summer, but its performance is reduced in winter and autumn. The best performance was observed in summer for CNN (R2 = 0.94, RMSE = 1 °C, MAE = 0.78 °C) and the lowest in winter for ANN (R2 = 0.79, RMSE = 1.6 °C, MAE = 1.3 °C). Elevation is an important predictor for ANN and RF, whereas it does not play a significant role for CNN. Additionally, CNN outperforms others even without elevation as an additional feature. Furthermore, MAE increases with higher elevation for ANN across all seasons. Conversely, MAE decreases with increased elevation for RF and CNN, particularly for summer, and remains mostly stable for other seasons.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"39 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercomparison of Machine Learning Models for Spatial Downscaling of Daily Mean Temperature in Complex Terrain\",\"authors\":\"Sudheer Bhakare, Sara Dal Gesso, Marco Venturini, Dino Zardi, Laura Trentini, Michael Matiu, Marcello Petitta\",\"doi\":\"10.3390/atmos15091085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare three machine learning models—artificial neural network (ANN), random forest (RF), and convolutional neural network (CNN)—for spatial downscaling of temperature at 2 m above ground (T2M) from a 9 km ERA5-Land reanalysis to 1 km in a complex terrain area, including the Non Valley and the Adige Valley in the Italian Alps. The results suggest that CNN performs better than the other methods across all seasons. RF performs similar to CNN, particularly in spring and summer, but its performance is reduced in winter and autumn. The best performance was observed in summer for CNN (R2 = 0.94, RMSE = 1 °C, MAE = 0.78 °C) and the lowest in winter for ANN (R2 = 0.79, RMSE = 1.6 °C, MAE = 1.3 °C). Elevation is an important predictor for ANN and RF, whereas it does not play a significant role for CNN. Additionally, CNN outperforms others even without elevation as an additional feature. Furthermore, MAE increases with higher elevation for ANN across all seasons. Conversely, MAE decreases with increased elevation for RF and CNN, particularly for summer, and remains mostly stable for other seasons.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15091085\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091085","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们比较了三种机器学习模型--人工神经网络(ANN)、随机森林(RF)和卷积神经网络(CNN)--在复杂地形区(包括意大利阿尔卑斯山的诺恩河谷和阿迪杰河谷)从 9 千米ERA5-Land 再分析到 1 千米的离地 2 米温度(T2M)的空间降尺度。结果表明,CNN 在所有季节的表现都优于其他方法。RF 的性能与 CNN 相似,尤其是在春季和夏季,但在冬季和秋季性能有所下降。CNN 在夏季的性能最好(R2 = 0.94,RMSE = 1 °C,MAE = 0.78 °C),而 ANN 在冬季的性能最低(R2 = 0.79,RMSE = 1.6 °C,MAE = 1.3 °C)。对 ANN 和 RF 而言,海拔是一个重要的预测因子,而对 CNN 而言,海拔并不起重要作用。此外,即使没有海拔作为附加特征,CNN 的表现也优于其他方法。此外,在所有季节,ANN 的 MAE 随海拔升高而增加。相反,RF 和 CNN 的 MAE 会随着海拔升高而降低,尤其是在夏季,而在其他季节则基本保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intercomparison of Machine Learning Models for Spatial Downscaling of Daily Mean Temperature in Complex Terrain
We compare three machine learning models—artificial neural network (ANN), random forest (RF), and convolutional neural network (CNN)—for spatial downscaling of temperature at 2 m above ground (T2M) from a 9 km ERA5-Land reanalysis to 1 km in a complex terrain area, including the Non Valley and the Adige Valley in the Italian Alps. The results suggest that CNN performs better than the other methods across all seasons. RF performs similar to CNN, particularly in spring and summer, but its performance is reduced in winter and autumn. The best performance was observed in summer for CNN (R2 = 0.94, RMSE = 1 °C, MAE = 0.78 °C) and the lowest in winter for ANN (R2 = 0.79, RMSE = 1.6 °C, MAE = 1.3 °C). Elevation is an important predictor for ANN and RF, whereas it does not play a significant role for CNN. Additionally, CNN outperforms others even without elevation as an additional feature. Furthermore, MAE increases with higher elevation for ANN across all seasons. Conversely, MAE decreases with increased elevation for RF and CNN, particularly for summer, and remains mostly stable for other seasons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1