多气候因子对植被恢复对干旱响应的交互影响的逐步多因素回归分析

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-09-08 DOI:10.3390/atmos15091094
Jingjing Fan, Yue Zhao, Dongnan Wang, Xiong Zhou, Yunyun Li, Wenwei Zhang, Fanfan Xu, Shibo Wei
{"title":"多气候因子对植被恢复对干旱响应的交互影响的逐步多因素回归分析","authors":"Jingjing Fan, Yue Zhao, Dongnan Wang, Xiong Zhou, Yunyun Li, Wenwei Zhang, Fanfan Xu, Shibo Wei","doi":"10.3390/atmos15091094","DOIUrl":null,"url":null,"abstract":"In this study, a stepwise multifactor vegetation regression analysis (SMVRA) approach was proposed to investigate the interaction of multiple climate factors on vegetative growth in the study area from 2000 to 2020. It was developed by integrating the stepwise linear regression method, Standardized Precipitation Evapotranspiration Index (SPEI), Normalized Difference Vegetation Index (NDVI), and Pearson correlation coefficient. SMVRA can be used to intuitively understand the interactive effects of multiple correlated factors (e.g., temperature, precipitation, potential evapotranspiration, and the drought index) upon vegetation. The results show that the resilience of vegetation in the BLR basin is influenced by the severity of drought. Annual changes in SPEI over the BLR basin show an increasing trend, with rates of 3.12 × 10−2. Precipitation and NDVI had a strong positive correlation (p < 0.05), found for 34.93% of the total pixels in the study area. In the BLR basin, vegetation growth is inhibited in the 4 years following a drought event. The area near 800 m is most sensitive to drought events. It provides a theoretical basis for future drought response and effective vegetation restoration in the region.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"58 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Stepwise Multifactor Regression Analysis of the Interactive Effects of Multiple Climate Factors on the Response of Vegetation Recovery to Drought\",\"authors\":\"Jingjing Fan, Yue Zhao, Dongnan Wang, Xiong Zhou, Yunyun Li, Wenwei Zhang, Fanfan Xu, Shibo Wei\",\"doi\":\"10.3390/atmos15091094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a stepwise multifactor vegetation regression analysis (SMVRA) approach was proposed to investigate the interaction of multiple climate factors on vegetative growth in the study area from 2000 to 2020. It was developed by integrating the stepwise linear regression method, Standardized Precipitation Evapotranspiration Index (SPEI), Normalized Difference Vegetation Index (NDVI), and Pearson correlation coefficient. SMVRA can be used to intuitively understand the interactive effects of multiple correlated factors (e.g., temperature, precipitation, potential evapotranspiration, and the drought index) upon vegetation. The results show that the resilience of vegetation in the BLR basin is influenced by the severity of drought. Annual changes in SPEI over the BLR basin show an increasing trend, with rates of 3.12 × 10−2. Precipitation and NDVI had a strong positive correlation (p < 0.05), found for 34.93% of the total pixels in the study area. In the BLR basin, vegetation growth is inhibited in the 4 years following a drought event. The area near 800 m is most sensitive to drought events. It provides a theoretical basis for future drought response and effective vegetation restoration in the region.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15091094\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091094","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种逐步多因素植被回归分析(SMVRA)方法,以研究2000-2020年期间多种气候因子对研究区植被生长的交互作用。该方法综合了逐步线性回归法、标准化降水蒸散指数(SPEI)、归一化差异植被指数(NDVI)和皮尔逊相关系数。SMVRA 可用于直观地了解多个相关因素(如温度、降水、潜在蒸散量和干旱指数)对植被的交互影响。结果表明,BLR 流域植被的恢复能力受到干旱严重程度的影响。西伯利亚河流域的 SPEI 年变化率为 3.12 × 10-2,呈上升趋势。降水量与净植被指数有很强的正相关性(p < 0.05),在研究区域的总像素中,降水量占 34.93%。在 BLR 流域,干旱发生后的 4 年内植被生长受到抑制。靠近 800 米的区域对干旱事件最为敏感。这为该地区未来应对干旱和有效恢复植被提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Stepwise Multifactor Regression Analysis of the Interactive Effects of Multiple Climate Factors on the Response of Vegetation Recovery to Drought
In this study, a stepwise multifactor vegetation regression analysis (SMVRA) approach was proposed to investigate the interaction of multiple climate factors on vegetative growth in the study area from 2000 to 2020. It was developed by integrating the stepwise linear regression method, Standardized Precipitation Evapotranspiration Index (SPEI), Normalized Difference Vegetation Index (NDVI), and Pearson correlation coefficient. SMVRA can be used to intuitively understand the interactive effects of multiple correlated factors (e.g., temperature, precipitation, potential evapotranspiration, and the drought index) upon vegetation. The results show that the resilience of vegetation in the BLR basin is influenced by the severity of drought. Annual changes in SPEI over the BLR basin show an increasing trend, with rates of 3.12 × 10−2. Precipitation and NDVI had a strong positive correlation (p < 0.05), found for 34.93% of the total pixels in the study area. In the BLR basin, vegetation growth is inhibited in the 4 years following a drought event. The area near 800 m is most sensitive to drought events. It provides a theoretical basis for future drought response and effective vegetation restoration in the region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1