基于半监督学习的喷流轴自动识别方法

IF 2.5 4区 地球科学 Q3 ENVIRONMENTAL SCIENCES Atmosphere Pub Date : 2024-09-06 DOI:10.3390/atmos15091077
Jianhong Gan, Tao Liao, Youming Qu, Aijuan Bai, Peiyang Wei, Yuling Gan, Tongli He
{"title":"基于半监督学习的喷流轴自动识别方法","authors":"Jianhong Gan, Tao Liao, Youming Qu, Aijuan Bai, Peiyang Wei, Yuling Gan, Tongli He","doi":"10.3390/atmos15091077","DOIUrl":null,"url":null,"abstract":"Changes in the jet stream not only affect the persistence of climate change and the frequency of extreme weather but are also closely related to climate change phenomena such as global warming. The manual way of drawing the jet stream axes in meteorological operations suffers from low efficiency and subjectivity issues. Automatic identification algorithms based on wind field analysis have some shortcomings, such as poor generalization ability, and it is difficult to handle merging and splitting. A semi-supervised learning jet stream axis identification method is proposed combining consistency learning and self-training. First, a segmentation model is trained via semi-supervised learning. In semi-supervised learning, two neural networks with the same structure are initialized with different methods, based on which pseudo-labels are obtained. The high-confidence pseudo-labels are selected by adding perturbation into the feature layer, and the selected pseudo-labels are incorporated into the training set for further self-training. Then, the jet stream narrow regions are segmented via the trained segmentation model. Finally, the jet stream axes are obtained with the skeleton extraction method. This paper uses the semi-supervised jet stream axis identification method to learn features from unlabeled data to achieve a small amount of labeled data to effectively train the model and improve the method’s generalization ability in a small number of labeled cases. Experiments on the jet stream axis dataset show that the identification precision of the presented method on the test set exceeds about 78% for SOTA baselines, and the improved method exhibits better performance compared to the correlation network model and the semi-supervised method.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"51 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Automatic Jet Stream Axis Identification Method Based on Semi-Supervised Learning\",\"authors\":\"Jianhong Gan, Tao Liao, Youming Qu, Aijuan Bai, Peiyang Wei, Yuling Gan, Tongli He\",\"doi\":\"10.3390/atmos15091077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changes in the jet stream not only affect the persistence of climate change and the frequency of extreme weather but are also closely related to climate change phenomena such as global warming. The manual way of drawing the jet stream axes in meteorological operations suffers from low efficiency and subjectivity issues. Automatic identification algorithms based on wind field analysis have some shortcomings, such as poor generalization ability, and it is difficult to handle merging and splitting. A semi-supervised learning jet stream axis identification method is proposed combining consistency learning and self-training. First, a segmentation model is trained via semi-supervised learning. In semi-supervised learning, two neural networks with the same structure are initialized with different methods, based on which pseudo-labels are obtained. The high-confidence pseudo-labels are selected by adding perturbation into the feature layer, and the selected pseudo-labels are incorporated into the training set for further self-training. Then, the jet stream narrow regions are segmented via the trained segmentation model. Finally, the jet stream axes are obtained with the skeleton extraction method. This paper uses the semi-supervised jet stream axis identification method to learn features from unlabeled data to achieve a small amount of labeled data to effectively train the model and improve the method’s generalization ability in a small number of labeled cases. Experiments on the jet stream axis dataset show that the identification precision of the presented method on the test set exceeds about 78% for SOTA baselines, and the improved method exhibits better performance compared to the correlation network model and the semi-supervised method.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15091077\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15091077","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

喷流的变化不仅影响气候变化的持续性和极端天气的发生频率,而且与全球变暖等气候变化现象密切相关。气象业务中人工绘制喷流轴的方式存在效率低和主观性强的问题。基于风场分析的自动识别算法也存在一些不足,如泛化能力差、难以处理合并和分裂等。本文提出了一种结合一致性学习和自我训练的半监督学习喷气流轴识别方法。首先,通过半监督学习训练分割模型。在半监督学习中,用不同的方法初始化两个结构相同的神经网络,并在此基础上获得伪标签。通过在特征层中添加扰动来选择高置信度的伪标签,并将所选的伪标签纳入训练集进行进一步的自我训练。然后,通过训练好的分割模型分割喷流狭窄区域。最后,利用骨架提取方法获得喷流轴线。本文采用半监督喷气流轴识别方法,从未标明的数据中学习特征,从而实现少量标注数据有效训练模型,提高方法在少量标注情况下的泛化能力。在喷气流轴数据集上的实验表明,本文提出的方法在测试集上的识别精度超过了 SOTA 基线的约 78%,与相关网络模型和半监督方法相比,改进后的方法表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Automatic Jet Stream Axis Identification Method Based on Semi-Supervised Learning
Changes in the jet stream not only affect the persistence of climate change and the frequency of extreme weather but are also closely related to climate change phenomena such as global warming. The manual way of drawing the jet stream axes in meteorological operations suffers from low efficiency and subjectivity issues. Automatic identification algorithms based on wind field analysis have some shortcomings, such as poor generalization ability, and it is difficult to handle merging and splitting. A semi-supervised learning jet stream axis identification method is proposed combining consistency learning and self-training. First, a segmentation model is trained via semi-supervised learning. In semi-supervised learning, two neural networks with the same structure are initialized with different methods, based on which pseudo-labels are obtained. The high-confidence pseudo-labels are selected by adding perturbation into the feature layer, and the selected pseudo-labels are incorporated into the training set for further self-training. Then, the jet stream narrow regions are segmented via the trained segmentation model. Finally, the jet stream axes are obtained with the skeleton extraction method. This paper uses the semi-supervised jet stream axis identification method to learn features from unlabeled data to achieve a small amount of labeled data to effectively train the model and improve the method’s generalization ability in a small number of labeled cases. Experiments on the jet stream axis dataset show that the identification precision of the presented method on the test set exceeds about 78% for SOTA baselines, and the improved method exhibits better performance compared to the correlation network model and the semi-supervised method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere
Atmosphere METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
13.80%
发文量
1769
审稿时长
1 months
期刊介绍: Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California Radon Equilibrium Factor and the Assessment of the Annual Effective Dose at Underground Workplaces Risk Assessment of Community-Scale High-Temperature and Rainstorm Waterlogging Disasters: A Case Study of the Dongsi Community in Beijing Investigating Radon Concentrations in the Cango Cave, South Africa Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1