{"title":"提高新型苯乙炔基端含硅氧烷的原羟基聚酰亚胺混合物的机械性能和热性能","authors":"Guohao Zhu, Jilei Xu, Huimin Sun, Ping Chen","doi":"10.1177/09540083241274320","DOIUrl":null,"url":null,"abstract":"A novel phenylethynyl-terminated siloxane-containing ortho-hydroxy polyimide (O-SPI) was synthesized and physically blended with thermoplastic polyimide (PI) to enhance both the thermal and mechanical properties of polyimide, addressing the growing demand for high-performance materials in harsh environments. The blend underwent conversion to semi-Interpenetrating Polymer Networks ( semi-IPNs) and benzoxazole structures through thermal curing of reactive phenylethynyl groups and thermal rearrangement of ortho-hydroxy imide units. The trends in thermal and mechanical properties were investigated in relation to the chemical structures and varying mass fraction of O-SPI. The covalent incorporation of semi-IPNs and rigid benzoxazole structures restrict segmental motion while the backbone linkage confers the toughness of the blends. These synergistic effects insure the cured blends with high glass transition temperatures (472.51°C) and tensile strength (117.81 MPa) simultaneously, demonstrating their potential for applications in challenging conditions.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":"14 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing mechanical and thermal properties of blends with novel phenylethynyl-terminated siloxane-containing ortho-hydroxy polyimide\",\"authors\":\"Guohao Zhu, Jilei Xu, Huimin Sun, Ping Chen\",\"doi\":\"10.1177/09540083241274320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel phenylethynyl-terminated siloxane-containing ortho-hydroxy polyimide (O-SPI) was synthesized and physically blended with thermoplastic polyimide (PI) to enhance both the thermal and mechanical properties of polyimide, addressing the growing demand for high-performance materials in harsh environments. The blend underwent conversion to semi-Interpenetrating Polymer Networks ( semi-IPNs) and benzoxazole structures through thermal curing of reactive phenylethynyl groups and thermal rearrangement of ortho-hydroxy imide units. The trends in thermal and mechanical properties were investigated in relation to the chemical structures and varying mass fraction of O-SPI. The covalent incorporation of semi-IPNs and rigid benzoxazole structures restrict segmental motion while the backbone linkage confers the toughness of the blends. These synergistic effects insure the cured blends with high glass transition temperatures (472.51°C) and tensile strength (117.81 MPa) simultaneously, demonstrating their potential for applications in challenging conditions.\",\"PeriodicalId\":12932,\"journal\":{\"name\":\"High Performance Polymers\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Performance Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09540083241274320\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083241274320","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Enhancing mechanical and thermal properties of blends with novel phenylethynyl-terminated siloxane-containing ortho-hydroxy polyimide
A novel phenylethynyl-terminated siloxane-containing ortho-hydroxy polyimide (O-SPI) was synthesized and physically blended with thermoplastic polyimide (PI) to enhance both the thermal and mechanical properties of polyimide, addressing the growing demand for high-performance materials in harsh environments. The blend underwent conversion to semi-Interpenetrating Polymer Networks ( semi-IPNs) and benzoxazole structures through thermal curing of reactive phenylethynyl groups and thermal rearrangement of ortho-hydroxy imide units. The trends in thermal and mechanical properties were investigated in relation to the chemical structures and varying mass fraction of O-SPI. The covalent incorporation of semi-IPNs and rigid benzoxazole structures restrict segmental motion while the backbone linkage confers the toughness of the blends. These synergistic effects insure the cured blends with high glass transition temperatures (472.51°C) and tensile strength (117.81 MPa) simultaneously, demonstrating their potential for applications in challenging conditions.
期刊介绍:
Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.