E. V. Denisova, K. O. Sokolov, A. P. Khmelinin, A. I. Konurin, D. V. Orlov
{"title":"利用探地雷达估算岩石-混凝土衬砌界面缺陷厚度","authors":"E. V. Denisova, K. O. Sokolov, A. P. Khmelinin, A. I. Konurin, D. V. Orlov","doi":"10.1134/s106273912402008x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Ground-penetrating radar is used to study defects in the form of internal layers in concrete structures. It is found that modulus of deflection coefficient of GPR signals changes as function of the layer thickness and electromagnetic properties of the material filling the layer (sand, wet sand or air). The experimental and numerical research used the method of peak-to-peak amplitude ratio, which enabled determining the Fresnel coefficients for the upper and lower boundaries of a layer. The minimal layer thickness recorded by GPR was 2 mm.</p>","PeriodicalId":16358,"journal":{"name":"Journal of Mining Science","volume":"20 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Thickness of Defects at Rock-Concrete Lining Interface by Ground-Penetrating Radar\",\"authors\":\"E. V. Denisova, K. O. Sokolov, A. P. Khmelinin, A. I. Konurin, D. V. Orlov\",\"doi\":\"10.1134/s106273912402008x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Ground-penetrating radar is used to study defects in the form of internal layers in concrete structures. It is found that modulus of deflection coefficient of GPR signals changes as function of the layer thickness and electromagnetic properties of the material filling the layer (sand, wet sand or air). The experimental and numerical research used the method of peak-to-peak amplitude ratio, which enabled determining the Fresnel coefficients for the upper and lower boundaries of a layer. The minimal layer thickness recorded by GPR was 2 mm.</p>\",\"PeriodicalId\":16358,\"journal\":{\"name\":\"Journal of Mining Science\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s106273912402008x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s106273912402008x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Estimating Thickness of Defects at Rock-Concrete Lining Interface by Ground-Penetrating Radar
Abstract
Ground-penetrating radar is used to study defects in the form of internal layers in concrete structures. It is found that modulus of deflection coefficient of GPR signals changes as function of the layer thickness and electromagnetic properties of the material filling the layer (sand, wet sand or air). The experimental and numerical research used the method of peak-to-peak amplitude ratio, which enabled determining the Fresnel coefficients for the upper and lower boundaries of a layer. The minimal layer thickness recorded by GPR was 2 mm.
期刊介绍:
The Journal reflects the current trends of development in fundamental and applied mining sciences. It publishes original articles on geomechanics and geoinformation science, investigation of relationships between global geodynamic processes and man-induced disasters, physical and mathematical modeling of rheological and wave processes in multiphase structural geological media, rock failure, analysis and synthesis of mechanisms, automatic machines, and robots, science of mining machines, creation of resource-saving and ecologically safe technologies of mineral mining, mine aerology and mine thermal physics, coal seam degassing, mechanisms for origination of spontaneous fires and methods for their extinction, mineral dressing, and bowel exploitation.