1980-2020年中国陆地生态系统碳储存的时空格局及其演变

IF 6 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Science China Earth Sciences Pub Date : 2024-08-28 DOI:10.1007/s11430-023-1385-9
Shaojian Wang, Shijie Zhou, Chuanglin Fang
{"title":"1980-2020年中国陆地生态系统碳储存的时空格局及其演变","authors":"Shaojian Wang, Shijie Zhou, Chuanglin Fang","doi":"10.1007/s11430-023-1385-9","DOIUrl":null,"url":null,"abstract":"<p>Analyzing the changes in carbon storage in terrestrial ecosystems caused by land use changes is a crucial part of exploring the carbon cycle. In addition, enhancing carbon storage in terrestrial ecosystems is an effective and environmentally friendly measure to sequester anthropogenic carbon emissions, which is significant for achieving carbon neutrality and curbing global climate change. This paper uses land use data and carbon density tables with the InVEST model to obtain a carbon storage distribution map of China. It further applies land use response elasticity coefficients, Theil index multi-stage nested decomposition, and spatial autocorrelation analysis to examine the spatial-temporal patterns, causes of changes, and evolution characteristics of carbon storage in terrestrial ecosystems from 1980 to 2020. The results show that the temporal changes in China’s carbon storage generally present an inverted S-curve, with an initial rapid decline followed by a slower decrease. Spatially, it features high levels in the northeast, low levels in the northwest, and a uniform distribution in the central and southern regions. The disturbance of land use type changes on terrestrial ecosystem carbon storage has been effectively mitigated. The significant reduction in grassland area in the Southwest region is the main source of carbon storage loss during the study period, and the encroachment of construction land on arable land in large urban agglomerations is one of the important causes of carbon storage loss. The Theil index multi-stage nested decomposition results indicate that the overall difference in carbon storage in China has decreased, while differences among cities within provinces and among counties within cities have increased. The influence of natural factors on the distribution of carbon storage is weakening, whereas the impact of human activities is becoming more profound, enhancing its influence on the spatial distribution of carbon storage in China. From 1980 to 2000, the carbon density in coastal metropolises generally showed a declining trend. From 2000 to 2020, the carbon density in the central urban areas of eastern coastal city clusters gradually showed an upward trend and continued to expand outward, revealing to some extent the “Environmental Kuznets Curve” characteristic in the development process of urban carbon storage. Therefore, in future ecological construction, the government should fully consider the impact of land management planning on carbon storage in different regions, promote the efficient use and standardized management of land, and strive to cross the “Environmental Kuznets Curve” inflection point of carbon storage as soon as possible.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial-temporal patterns and evolution of carbon storage in China’s terrestrial ecosystems from 1980 to 2020\",\"authors\":\"Shaojian Wang, Shijie Zhou, Chuanglin Fang\",\"doi\":\"10.1007/s11430-023-1385-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Analyzing the changes in carbon storage in terrestrial ecosystems caused by land use changes is a crucial part of exploring the carbon cycle. In addition, enhancing carbon storage in terrestrial ecosystems is an effective and environmentally friendly measure to sequester anthropogenic carbon emissions, which is significant for achieving carbon neutrality and curbing global climate change. This paper uses land use data and carbon density tables with the InVEST model to obtain a carbon storage distribution map of China. It further applies land use response elasticity coefficients, Theil index multi-stage nested decomposition, and spatial autocorrelation analysis to examine the spatial-temporal patterns, causes of changes, and evolution characteristics of carbon storage in terrestrial ecosystems from 1980 to 2020. The results show that the temporal changes in China’s carbon storage generally present an inverted S-curve, with an initial rapid decline followed by a slower decrease. Spatially, it features high levels in the northeast, low levels in the northwest, and a uniform distribution in the central and southern regions. The disturbance of land use type changes on terrestrial ecosystem carbon storage has been effectively mitigated. The significant reduction in grassland area in the Southwest region is the main source of carbon storage loss during the study period, and the encroachment of construction land on arable land in large urban agglomerations is one of the important causes of carbon storage loss. The Theil index multi-stage nested decomposition results indicate that the overall difference in carbon storage in China has decreased, while differences among cities within provinces and among counties within cities have increased. The influence of natural factors on the distribution of carbon storage is weakening, whereas the impact of human activities is becoming more profound, enhancing its influence on the spatial distribution of carbon storage in China. From 1980 to 2000, the carbon density in coastal metropolises generally showed a declining trend. From 2000 to 2020, the carbon density in the central urban areas of eastern coastal city clusters gradually showed an upward trend and continued to expand outward, revealing to some extent the “Environmental Kuznets Curve” characteristic in the development process of urban carbon storage. Therefore, in future ecological construction, the government should fully consider the impact of land management planning on carbon storage in different regions, promote the efficient use and standardized management of land, and strive to cross the “Environmental Kuznets Curve” inflection point of carbon storage as soon as possible.</p>\",\"PeriodicalId\":21651,\"journal\":{\"name\":\"Science China Earth Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11430-023-1385-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11430-023-1385-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

分析土地利用变化引起的陆地生态系统碳储存的变化是探索碳循环的重要组成部分。此外,提高陆地生态系统的碳储量是封存人为碳排放的有效环保措施,对实现碳中和和遏制全球气候变化意义重大。本文利用土地利用数据和碳密度表,结合 InVEST 模型,得到了中国碳储量分布图。进一步运用土地利用响应弹性系数、Theil 指数多级嵌套分解和空间自相关分析方法,研究了 1980-2020 年陆地生态系统碳储量的时空格局、变化原因和演化特征。结果表明,中国碳储量的时空变化总体上呈现倒 S 型曲线,最初快速下降,随后下降速度放缓。从空间上看,东北地区碳储量高,西北地区碳储量低,中南地区碳储量分布均匀。土地利用类型变化对陆地生态系统碳储存的干扰得到了有效缓解。西南地区草地面积的大幅减少是研究期间碳储量损失的主要来源,大城市群建设用地对耕地的侵占是碳储量损失的重要原因之一。Theil 指数多级嵌套分解结果表明,中国碳储量的总体差异有所减小,而省内城市间和城市内县域间的差异有所增大。自然因素对碳储量分布的影响在减弱,而人类活动的影响在加深,对中国碳储量空间分布的影响在增强。从 1980 年到 2000 年,沿海大都市的碳密度总体呈下降趋势。从 2000 年到 2020 年,东部沿海城市群中心城区的碳密度逐渐呈上升趋势,并继续向外扩展,在一定程度上揭示了城市碳储存发展过程中的 "环境库兹涅茨曲线 "特征。因此,在未来的生态建设中,政府应充分考虑不同区域土地管理规划对碳储量的影响,促进土地的高效利用和规范管理,争取早日跨越碳储量的 "环境库兹涅茨曲线 "拐点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial-temporal patterns and evolution of carbon storage in China’s terrestrial ecosystems from 1980 to 2020

Analyzing the changes in carbon storage in terrestrial ecosystems caused by land use changes is a crucial part of exploring the carbon cycle. In addition, enhancing carbon storage in terrestrial ecosystems is an effective and environmentally friendly measure to sequester anthropogenic carbon emissions, which is significant for achieving carbon neutrality and curbing global climate change. This paper uses land use data and carbon density tables with the InVEST model to obtain a carbon storage distribution map of China. It further applies land use response elasticity coefficients, Theil index multi-stage nested decomposition, and spatial autocorrelation analysis to examine the spatial-temporal patterns, causes of changes, and evolution characteristics of carbon storage in terrestrial ecosystems from 1980 to 2020. The results show that the temporal changes in China’s carbon storage generally present an inverted S-curve, with an initial rapid decline followed by a slower decrease. Spatially, it features high levels in the northeast, low levels in the northwest, and a uniform distribution in the central and southern regions. The disturbance of land use type changes on terrestrial ecosystem carbon storage has been effectively mitigated. The significant reduction in grassland area in the Southwest region is the main source of carbon storage loss during the study period, and the encroachment of construction land on arable land in large urban agglomerations is one of the important causes of carbon storage loss. The Theil index multi-stage nested decomposition results indicate that the overall difference in carbon storage in China has decreased, while differences among cities within provinces and among counties within cities have increased. The influence of natural factors on the distribution of carbon storage is weakening, whereas the impact of human activities is becoming more profound, enhancing its influence on the spatial distribution of carbon storage in China. From 1980 to 2000, the carbon density in coastal metropolises generally showed a declining trend. From 2000 to 2020, the carbon density in the central urban areas of eastern coastal city clusters gradually showed an upward trend and continued to expand outward, revealing to some extent the “Environmental Kuznets Curve” characteristic in the development process of urban carbon storage. Therefore, in future ecological construction, the government should fully consider the impact of land management planning on carbon storage in different regions, promote the efficient use and standardized management of land, and strive to cross the “Environmental Kuznets Curve” inflection point of carbon storage as soon as possible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Earth Sciences
Science China Earth Sciences GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
9.60
自引率
5.30%
发文量
135
审稿时长
3-8 weeks
期刊介绍: Science China Earth Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
期刊最新文献
Human disturbance exacerbated erosion and deposition in the karst peak-cluster depressions during the Ming and Qing dynasties Relationship between environmental evolution and human activities in the northeastern Qinghai-Xizang Plateau throughout the past millennium and its implications for the onset of the Anthropocene An integrated land change modeler and distributed hydrological model approach for quantifying future urban runoff dynamics First observation results of Macao Science Satellite 1 on lightning-induced electron precipitation Reconciled estimation of Antarctic ice sheet mass balance and contribution to global sea level change from 1996 to 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1