Xiaojuan Feng, Guohua Dai, Ting Liu, Juan Jia, Erxiong Zhu, Chengzhu Liu, Yunpeng Zhao, Ya Wang, Enze Kang, Jun Xiao, Wei Li
{"title":"从生物地球化学角度了解土壤固碳的机制和潜在途径","authors":"Xiaojuan Feng, Guohua Dai, Ting Liu, Juan Jia, Erxiong Zhu, Chengzhu Liu, Yunpeng Zhao, Ya Wang, Enze Kang, Jun Xiao, Wei Li","doi":"10.1007/s11430-024-1359-9","DOIUrl":null,"url":null,"abstract":"<p>Soil carbon sequestration is listed by the <i>United Nations Framework Convention on Climate Change</i> as one of the key ways to achieve long-term “carbon neutrality” in the context of global warming. Soil carbon sequestration is a complex biogeochemical process that involves plants, microbes, and rock minerals at its core. Yet, its regulation mechanisms and promotion pathways remain unclear. This paper reviews recent progress in the related domestic and international research and provides an overview of the key processes and mechanisms of soil carbon sequestration. The main pathways for enhancing soil carbon sequestration (including plant inputs, mineral protection, microbial transformation, and rock weathering) are summarized. The paper also discusses and synthesizes how advanced biogeochemical methods and technologies may be employed to explore soil carbon sequestration mechanisms and potentials. The overall aim of this review is to improve our understanding of soil carbon sequestration as a nature-based solution to combatting climate change from the biogeochemistry perspective, and to highlight the role of fundamental research in Earth Sciences in helping to achieve China’s carbon neutrality goals.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the mechanisms and potential pathways of soil carbon sequestration from the biogeochemistry perspective\",\"authors\":\"Xiaojuan Feng, Guohua Dai, Ting Liu, Juan Jia, Erxiong Zhu, Chengzhu Liu, Yunpeng Zhao, Ya Wang, Enze Kang, Jun Xiao, Wei Li\",\"doi\":\"10.1007/s11430-024-1359-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soil carbon sequestration is listed by the <i>United Nations Framework Convention on Climate Change</i> as one of the key ways to achieve long-term “carbon neutrality” in the context of global warming. Soil carbon sequestration is a complex biogeochemical process that involves plants, microbes, and rock minerals at its core. Yet, its regulation mechanisms and promotion pathways remain unclear. This paper reviews recent progress in the related domestic and international research and provides an overview of the key processes and mechanisms of soil carbon sequestration. The main pathways for enhancing soil carbon sequestration (including plant inputs, mineral protection, microbial transformation, and rock weathering) are summarized. The paper also discusses and synthesizes how advanced biogeochemical methods and technologies may be employed to explore soil carbon sequestration mechanisms and potentials. The overall aim of this review is to improve our understanding of soil carbon sequestration as a nature-based solution to combatting climate change from the biogeochemistry perspective, and to highlight the role of fundamental research in Earth Sciences in helping to achieve China’s carbon neutrality goals.</p>\",\"PeriodicalId\":21651,\"journal\":{\"name\":\"Science China Earth Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11430-024-1359-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11430-024-1359-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Understanding the mechanisms and potential pathways of soil carbon sequestration from the biogeochemistry perspective
Soil carbon sequestration is listed by the United Nations Framework Convention on Climate Change as one of the key ways to achieve long-term “carbon neutrality” in the context of global warming. Soil carbon sequestration is a complex biogeochemical process that involves plants, microbes, and rock minerals at its core. Yet, its regulation mechanisms and promotion pathways remain unclear. This paper reviews recent progress in the related domestic and international research and provides an overview of the key processes and mechanisms of soil carbon sequestration. The main pathways for enhancing soil carbon sequestration (including plant inputs, mineral protection, microbial transformation, and rock weathering) are summarized. The paper also discusses and synthesizes how advanced biogeochemical methods and technologies may be employed to explore soil carbon sequestration mechanisms and potentials. The overall aim of this review is to improve our understanding of soil carbon sequestration as a nature-based solution to combatting climate change from the biogeochemistry perspective, and to highlight the role of fundamental research in Earth Sciences in helping to achieve China’s carbon neutrality goals.
期刊介绍:
Science China Earth Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.