从商店发货的全渠道运营中的稳健定价和库存决策

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-05 DOI:10.1002/mde.4348
Yue Sun, Ruozhen Qiu, Minghe Sun
{"title":"从商店发货的全渠道运营中的稳健定价和库存决策","authors":"Yue Sun, Ruozhen Qiu, Minghe Sun","doi":"10.1002/mde.4348","DOIUrl":null,"url":null,"abstract":"This work studies the deployment of the ship‐from‐store omnichannel strategy and the pricing and inventory decisions for an online retailer. Robust optimization models are constructed for the online‐only and the ship‐from‐store modes under a budgeted uncertainty set. The ARIMA model is used to predict the parameter values of the budgeted uncertainty set using historical demand data. The closed‐form optimal solution for the online‐only mode is obtained. The robust counterpart model for the ship‐from‐store mode is converted to a mixed integer quadratic programming model. Numerical studies are conducted to validate the theoretical results and to verify the effectiveness and practicality of the developed robust optimization solution approach. The results show that adopting a ship‐from‐store strategy may hurt the retailer's profit if a significant proportion of consumers are time‐sensitive with high travel cost. The ship‐from‐store strategy is optimal if it significantly boosts market growth.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust pricing and inventory decisions in ship‐from‐store omnichannel operations\",\"authors\":\"Yue Sun, Ruozhen Qiu, Minghe Sun\",\"doi\":\"10.1002/mde.4348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies the deployment of the ship‐from‐store omnichannel strategy and the pricing and inventory decisions for an online retailer. Robust optimization models are constructed for the online‐only and the ship‐from‐store modes under a budgeted uncertainty set. The ARIMA model is used to predict the parameter values of the budgeted uncertainty set using historical demand data. The closed‐form optimal solution for the online‐only mode is obtained. The robust counterpart model for the ship‐from‐store mode is converted to a mixed integer quadratic programming model. Numerical studies are conducted to validate the theoretical results and to verify the effectiveness and practicality of the developed robust optimization solution approach. The results show that adopting a ship‐from‐store strategy may hurt the retailer's profit if a significant proportion of consumers are time‐sensitive with high travel cost. The ship‐from‐store strategy is optimal if it significantly boosts market growth.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1002/mde.4348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1002/mde.4348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究探讨了从商店发货的全渠道战略的部署以及在线零售商的定价和库存决策。在预算不确定性集下,为在线模式和从商店发货模式构建了稳健的优化模型。利用历史需求数据,ARIMA 模型可用于预测预算不确定性集的参数值。得出了在线模式的闭式最优解。从商店发货模式的稳健对应模型被转换为混合整数二次编程模型。通过数值研究验证了理论结果,并验证了所开发的稳健优化求解方法的有效性和实用性。研究结果表明,如果相当一部分消费者对时间敏感且旅行成本较高,那么采用从商店发货的策略可能会损害零售商的利润。如果从商店发货能显著促进市场增长,那么这种策略就是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust pricing and inventory decisions in ship‐from‐store omnichannel operations
This work studies the deployment of the ship‐from‐store omnichannel strategy and the pricing and inventory decisions for an online retailer. Robust optimization models are constructed for the online‐only and the ship‐from‐store modes under a budgeted uncertainty set. The ARIMA model is used to predict the parameter values of the budgeted uncertainty set using historical demand data. The closed‐form optimal solution for the online‐only mode is obtained. The robust counterpart model for the ship‐from‐store mode is converted to a mixed integer quadratic programming model. Numerical studies are conducted to validate the theoretical results and to verify the effectiveness and practicality of the developed robust optimization solution approach. The results show that adopting a ship‐from‐store strategy may hurt the retailer's profit if a significant proportion of consumers are time‐sensitive with high travel cost. The ship‐from‐store strategy is optimal if it significantly boosts market growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1