Michael J. Lance, T. David Ritter, Alexander V. Zale, Grant G. Grisak, Jason A. Mullen, Stephen J. Walsh, Kurt C. Heim, Robert Al‐Chokhachy
{"title":"同域鲑科鱼类在未分片的内陆水域中运动的时空变异性","authors":"Michael J. Lance, T. David Ritter, Alexander V. Zale, Grant G. Grisak, Jason A. Mullen, Stephen J. Walsh, Kurt C. Heim, Robert Al‐Chokhachy","doi":"10.1002/tafs.10485","DOIUrl":null,"url":null,"abstract":"ObjectiveOur aim was to determine the movement patterns of three abundant salmonids—Brown Trout <jats:italic>Salmo trutta</jats:italic>, Mountain Whitefish <jats:italic>Prosopium williamsoni</jats:italic>, and Rainbow Trout <jats:italic>Oncorhynchus mykiss</jats:italic>—in the Smith River watershed of Montana.MethodsWe tagged 7172 fish with passive integrated transponder (PIT) tags, monitored their movements past 15 stationary PIT arrays over 4 years, and located tagged fish between arrays by conducting mobile surveys.ResultMovement patterns varied seasonally, among species, and among locations. Movement was greatest in the middle portion of the watershed, which included a pristine main‐stem canyon and lower reaches of major tributaries. Fish rarely left the canyon, but movement into the canyon from other regions was common. Mountain Whitefish were most likely to move, and Brown Trout were least likely to move. Most fish travelled less than 10 km, but some fish travelled over 100 km. Distinct movement patterns were not evident; rather, a continuous spectrum of movement behaviors was apparent. Movements by Mountain Whitefish and Rainbow Trout increased during their spawning periods. Movements peaked when mean daily water temperatures were between 11.3 and 17.1°C.ConclusionMovements were diverse and probably contributed to metapopulation dynamics, population resiliency, and species diversity. Fish movements along stream networks connect populations across diverse landscapes, and therefore, protecting and restoring stream connectivity along inland streams such as the Smith River is critical to maintaining productive fish assemblages.","PeriodicalId":23214,"journal":{"name":"Transactions of The American Fisheries Society","volume":"11 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial and temporal variability of movements among sympatric salmonids in an unfragmented inland watershed\",\"authors\":\"Michael J. Lance, T. David Ritter, Alexander V. Zale, Grant G. Grisak, Jason A. Mullen, Stephen J. Walsh, Kurt C. Heim, Robert Al‐Chokhachy\",\"doi\":\"10.1002/tafs.10485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ObjectiveOur aim was to determine the movement patterns of three abundant salmonids—Brown Trout <jats:italic>Salmo trutta</jats:italic>, Mountain Whitefish <jats:italic>Prosopium williamsoni</jats:italic>, and Rainbow Trout <jats:italic>Oncorhynchus mykiss</jats:italic>—in the Smith River watershed of Montana.MethodsWe tagged 7172 fish with passive integrated transponder (PIT) tags, monitored their movements past 15 stationary PIT arrays over 4 years, and located tagged fish between arrays by conducting mobile surveys.ResultMovement patterns varied seasonally, among species, and among locations. Movement was greatest in the middle portion of the watershed, which included a pristine main‐stem canyon and lower reaches of major tributaries. Fish rarely left the canyon, but movement into the canyon from other regions was common. Mountain Whitefish were most likely to move, and Brown Trout were least likely to move. Most fish travelled less than 10 km, but some fish travelled over 100 km. Distinct movement patterns were not evident; rather, a continuous spectrum of movement behaviors was apparent. Movements by Mountain Whitefish and Rainbow Trout increased during their spawning periods. Movements peaked when mean daily water temperatures were between 11.3 and 17.1°C.ConclusionMovements were diverse and probably contributed to metapopulation dynamics, population resiliency, and species diversity. Fish movements along stream networks connect populations across diverse landscapes, and therefore, protecting and restoring stream connectivity along inland streams such as the Smith River is critical to maintaining productive fish assemblages.\",\"PeriodicalId\":23214,\"journal\":{\"name\":\"Transactions of The American Fisheries Society\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The American Fisheries Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/tafs.10485\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The American Fisheries Society","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/tafs.10485","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Spatial and temporal variability of movements among sympatric salmonids in an unfragmented inland watershed
ObjectiveOur aim was to determine the movement patterns of three abundant salmonids—Brown Trout Salmo trutta, Mountain Whitefish Prosopium williamsoni, and Rainbow Trout Oncorhynchus mykiss—in the Smith River watershed of Montana.MethodsWe tagged 7172 fish with passive integrated transponder (PIT) tags, monitored their movements past 15 stationary PIT arrays over 4 years, and located tagged fish between arrays by conducting mobile surveys.ResultMovement patterns varied seasonally, among species, and among locations. Movement was greatest in the middle portion of the watershed, which included a pristine main‐stem canyon and lower reaches of major tributaries. Fish rarely left the canyon, but movement into the canyon from other regions was common. Mountain Whitefish were most likely to move, and Brown Trout were least likely to move. Most fish travelled less than 10 km, but some fish travelled over 100 km. Distinct movement patterns were not evident; rather, a continuous spectrum of movement behaviors was apparent. Movements by Mountain Whitefish and Rainbow Trout increased during their spawning periods. Movements peaked when mean daily water temperatures were between 11.3 and 17.1°C.ConclusionMovements were diverse and probably contributed to metapopulation dynamics, population resiliency, and species diversity. Fish movements along stream networks connect populations across diverse landscapes, and therefore, protecting and restoring stream connectivity along inland streams such as the Smith River is critical to maintaining productive fish assemblages.
期刊介绍:
Transactions of the American Fisheries Society is a highly regarded international journal of fisheries science that has been published continuously since 1872. It features results of basic and applied research in genetics, physiology, biology, ecology, population dynamics, economics, health, culture, and other topics germane to marine and freshwater finfish and shellfish and their respective fisheries and environments.