{"title":"回顾:用于医疗监护应用的先进柔性电子材料的发展与挑战","authors":"Tao Zeng, Yufeng Wu, Ming Lei","doi":"10.1007/s42114-024-00949-9","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible sensors, made from flexible electronic materials, are of great importance in the medical field due to the rising prevalence of cardiovascular and cerebrovascular diseases. Studies have demonstrated that timely diagnosis and continuous monitoring of relevant physiological signals can be beneficial in preventing such conditions. Although traditional rigid monitoring sensors are still widely used for medical monitoring, the EMG, ECG, and EEG signals they obtain are often significantly affected by motion artifacts and noise. Therefore, the significance of wearable smart monitoring devices based on flexible electronic materials cannot be overstated. Numerous researchers have been working tirelessly for this purpose, exploring solutions from various angles, including material choice, circuit design, and algorithmic processing. This paper begins by analyzing the causes of motion artifacts in medical smart monitoring devices. Next, it introduces the application of flexible materials and flexible electronic materials in several aspects, along with the work of some representative flexible sensors. Following this, it discusses materials selection and device designs (e.g., accelerometers, gyroscopes, differential circuits, etc.) and algorithmic approaches for eliminating motion artifacts. Finally, an outlook on motion artifact removal techniques from the perspectives of more in-depth material development, structural design, and machine learning is provided. The purpose of this paper is to offer a comprehensive overview of current motion artifact removal techniques and materials, aiming to encourage further research and effectively address the key problem of signal acquisition accuracy in smart biomonitoring.</p><h3>Graphical Abstract</h3><p>TOC: Motion artifact occurrence state [40, 120]. Two methods of motion artifact removal or attenuation states are now commonly used: device design [30, 109] and algorithm development [115]. Future development focusing on machine learning and AI. [136]</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review: Developments and challenges of advanced flexible electronic materials for medical monitoring applications\",\"authors\":\"Tao Zeng, Yufeng Wu, Ming Lei\",\"doi\":\"10.1007/s42114-024-00949-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flexible sensors, made from flexible electronic materials, are of great importance in the medical field due to the rising prevalence of cardiovascular and cerebrovascular diseases. Studies have demonstrated that timely diagnosis and continuous monitoring of relevant physiological signals can be beneficial in preventing such conditions. Although traditional rigid monitoring sensors are still widely used for medical monitoring, the EMG, ECG, and EEG signals they obtain are often significantly affected by motion artifacts and noise. Therefore, the significance of wearable smart monitoring devices based on flexible electronic materials cannot be overstated. Numerous researchers have been working tirelessly for this purpose, exploring solutions from various angles, including material choice, circuit design, and algorithmic processing. This paper begins by analyzing the causes of motion artifacts in medical smart monitoring devices. Next, it introduces the application of flexible materials and flexible electronic materials in several aspects, along with the work of some representative flexible sensors. Following this, it discusses materials selection and device designs (e.g., accelerometers, gyroscopes, differential circuits, etc.) and algorithmic approaches for eliminating motion artifacts. Finally, an outlook on motion artifact removal techniques from the perspectives of more in-depth material development, structural design, and machine learning is provided. The purpose of this paper is to offer a comprehensive overview of current motion artifact removal techniques and materials, aiming to encourage further research and effectively address the key problem of signal acquisition accuracy in smart biomonitoring.</p><h3>Graphical Abstract</h3><p>TOC: Motion artifact occurrence state [40, 120]. Two methods of motion artifact removal or attenuation states are now commonly used: device design [30, 109] and algorithm development [115]. Future development focusing on machine learning and AI. [136]</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-00949-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00949-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Review: Developments and challenges of advanced flexible electronic materials for medical monitoring applications
Flexible sensors, made from flexible electronic materials, are of great importance in the medical field due to the rising prevalence of cardiovascular and cerebrovascular diseases. Studies have demonstrated that timely diagnosis and continuous monitoring of relevant physiological signals can be beneficial in preventing such conditions. Although traditional rigid monitoring sensors are still widely used for medical monitoring, the EMG, ECG, and EEG signals they obtain are often significantly affected by motion artifacts and noise. Therefore, the significance of wearable smart monitoring devices based on flexible electronic materials cannot be overstated. Numerous researchers have been working tirelessly for this purpose, exploring solutions from various angles, including material choice, circuit design, and algorithmic processing. This paper begins by analyzing the causes of motion artifacts in medical smart monitoring devices. Next, it introduces the application of flexible materials and flexible electronic materials in several aspects, along with the work of some representative flexible sensors. Following this, it discusses materials selection and device designs (e.g., accelerometers, gyroscopes, differential circuits, etc.) and algorithmic approaches for eliminating motion artifacts. Finally, an outlook on motion artifact removal techniques from the perspectives of more in-depth material development, structural design, and machine learning is provided. The purpose of this paper is to offer a comprehensive overview of current motion artifact removal techniques and materials, aiming to encourage further research and effectively address the key problem of signal acquisition accuracy in smart biomonitoring.
Graphical Abstract
TOC: Motion artifact occurrence state [40, 120]. Two methods of motion artifact removal or attenuation states are now commonly used: device design [30, 109] and algorithm development [115]. Future development focusing on machine learning and AI. [136]
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.