{"title":"针对网络物理系统的基于几何的数据驱动型完整隐形攻击","authors":"Kaiyu Wang;Dan Ye","doi":"10.1109/TNSE.2024.3458095","DOIUrl":null,"url":null,"abstract":"This paper proposes a data-driven complete stealthy attack strategy against cyber-physical systems (CPSs) based on the geometric approach. The attacker aims to degrade estimation performance and maintain stealthiness by compromising partial communication links of the actuator and sensor. Different from the classic analysis methods that require accurate model parameters, we focus on how to establish the connection between geometry and data-driven approaches to represent the malicious behavior of attacks on state estimation. First of all, the existence of complete stealthy attacks is analyzed. Then, the maximal attached stealthy subspace and the set of estimation errors under complete stealthy attacks are analyzed intuitively from the geometric point of view. On this basis, the complete stealthy subspace is constructed with the subspace identification method, which is applied to generate the corresponding stealthy attack sequence through the collected system input-output data. Finally, simulation results are provided to illustrate the effectiveness of the proposed strategies.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"11 6","pages":"5839-5849"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry-Based Data-Driven Complete Stealthy Attacks Against Cyber-Physical Systems\",\"authors\":\"Kaiyu Wang;Dan Ye\",\"doi\":\"10.1109/TNSE.2024.3458095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a data-driven complete stealthy attack strategy against cyber-physical systems (CPSs) based on the geometric approach. The attacker aims to degrade estimation performance and maintain stealthiness by compromising partial communication links of the actuator and sensor. Different from the classic analysis methods that require accurate model parameters, we focus on how to establish the connection between geometry and data-driven approaches to represent the malicious behavior of attacks on state estimation. First of all, the existence of complete stealthy attacks is analyzed. Then, the maximal attached stealthy subspace and the set of estimation errors under complete stealthy attacks are analyzed intuitively from the geometric point of view. On this basis, the complete stealthy subspace is constructed with the subspace identification method, which is applied to generate the corresponding stealthy attack sequence through the collected system input-output data. Finally, simulation results are provided to illustrate the effectiveness of the proposed strategies.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"11 6\",\"pages\":\"5839-5849\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10679707/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10679707/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Geometry-Based Data-Driven Complete Stealthy Attacks Against Cyber-Physical Systems
This paper proposes a data-driven complete stealthy attack strategy against cyber-physical systems (CPSs) based on the geometric approach. The attacker aims to degrade estimation performance and maintain stealthiness by compromising partial communication links of the actuator and sensor. Different from the classic analysis methods that require accurate model parameters, we focus on how to establish the connection between geometry and data-driven approaches to represent the malicious behavior of attacks on state estimation. First of all, the existence of complete stealthy attacks is analyzed. Then, the maximal attached stealthy subspace and the set of estimation errors under complete stealthy attacks are analyzed intuitively from the geometric point of view. On this basis, the complete stealthy subspace is constructed with the subspace identification method, which is applied to generate the corresponding stealthy attack sequence through the collected system input-output data. Finally, simulation results are provided to illustrate the effectiveness of the proposed strategies.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.