Nasira Hussain, Muhammad Asif, Shanza Shafaat, Muhammad Saqib Khan, Nadia Riaz, Mazhar Iqbal, Abdullah Javed, Tayyab Ashfaq Butt, Ahson Jabbar Shaikh, Muhammad Bilal
Multilayer adsorption of reactive orange 16 dye onto Fe2O3/ZnO hybrid nanoadsorbent: mechanistic insights from kinetics, isotherms and dynamic light scattering studies
BACKGROUND
Fe2O3/ZnO hybrid nanoadsorbent was synthesized by the coprecipitation method and characterized. The hydrodynamic size and stability of the nanoadsorbent were investigated in batch adsorption of toxic Reactive orange (RO)16 dye at increasing concentrations. The mechanism of monolayer and multilayer dye adsorption was elucidated for the first time together through dynamic light scattering (DLS), isotherm, kinetic and thermodynamic studies. A tomato seed germination assay was performed to confirm the material and treated water toxicity.
RESULTS
The ferromagnetic nanoadsorbent exhibited 85% RO16 dye removal. Nonlinear fitting of isotherm and kinetic models suggest the chemisorption (monolayer) and physisorption (multilayer) of dye over the heterogeneous surface of the nanoadsorbent, respectively, at lower and higher concentration of dye. In line with these mechanistic insights, DLS studies demonstrate that monolayer adsorption increased hydrodynamic size up to 100 mg L−1 by face-off binding of dye molecules, whereas multilayer adsorption was in the 100–500 mg L−1 concentration range; besides increase in adsorption capacity, did not magnify hydrodynamic size owing to face-on binding with multiple dye molecule stacking. Zeta potential data confirmed greater stability of the nanoadsorbent at solution pH with large hydrodynamic size. Thermodynamic studies suggested that endothermic and spontaneous adsorption process primarily controlled physical adsorption at higher dye concentrations. A toxicity assay proved that the nanoadsorbent and treated water are environmentally safe.
期刊介绍:
Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.