BayesQuantify:R软件包,用于根据贝叶斯框架完善ACMG/AMP标准

Sihan Liu, Xiaoshu Feng, Fengxiao Bu
{"title":"BayesQuantify:R软件包,用于根据贝叶斯框架完善ACMG/AMP标准","authors":"Sihan Liu, Xiaoshu Feng, Fengxiao Bu","doi":"10.1101/2024.09.08.24313284","DOIUrl":null,"url":null,"abstract":"Improving the precision and accuracy of variant classification in clinical genetic testing involves further specification and stratification of the ACMG/AMP criteria. The Bayesian framework proposed by ClinGen has provided a mathematical foundation for evidence refinement, successfully quantifying, and extending the evidence strengths of PS1, PS4, PM5, and PP3/BP4. However, existing software and tools designed for quantifying the evidence strength and establishing corresponding thresholds to refine the ACMG/AMP criteria are lacking. To address this gap, we have developed BayesQuantify, an R package that aims to provide users with a unified resource for quantifying the strength of evidence for ACMG/AMP criteria using a naive Bayes classifier. By analyzing publicly available data, we demonstrate BayesQuantify's capability to offer objective and consistent refinement of the ACMG/AMP evidence. BayesQuantify is available from GitHub at https://github.com/liusihan/BayesQuantify.","PeriodicalId":501375,"journal":{"name":"medRxiv - Genetic and Genomic Medicine","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BayesQuantify: an R package utilized to refine the ACMG/AMP criteria according to the Bayesian framework\",\"authors\":\"Sihan Liu, Xiaoshu Feng, Fengxiao Bu\",\"doi\":\"10.1101/2024.09.08.24313284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving the precision and accuracy of variant classification in clinical genetic testing involves further specification and stratification of the ACMG/AMP criteria. The Bayesian framework proposed by ClinGen has provided a mathematical foundation for evidence refinement, successfully quantifying, and extending the evidence strengths of PS1, PS4, PM5, and PP3/BP4. However, existing software and tools designed for quantifying the evidence strength and establishing corresponding thresholds to refine the ACMG/AMP criteria are lacking. To address this gap, we have developed BayesQuantify, an R package that aims to provide users with a unified resource for quantifying the strength of evidence for ACMG/AMP criteria using a naive Bayes classifier. By analyzing publicly available data, we demonstrate BayesQuantify's capability to offer objective and consistent refinement of the ACMG/AMP evidence. BayesQuantify is available from GitHub at https://github.com/liusihan/BayesQuantify.\",\"PeriodicalId\":501375,\"journal\":{\"name\":\"medRxiv - Genetic and Genomic Medicine\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Genetic and Genomic Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.08.24313284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Genetic and Genomic Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.08.24313284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要提高临床基因检测中变异体分类的精确度和准确性,就必须进一步规范和分层 ACMG/AMP 标准。ClinGen 提出的贝叶斯框架为证据细化提供了数学基础,成功量化并扩展了 PS1、PS4、PM5 和 PP3/BP4 的证据强度。然而,目前还缺乏用于量化证据强度和建立相应阈值以完善 ACMG/AMP 标准的软件和工具。为了填补这一空白,我们开发了贝叶斯量化软件包(BayesQuantify),旨在为用户提供统一的资源,利用天真贝叶斯分类器量化 ACMG/AMP 标准的证据强度。通过分析公开数据,我们展示了 BayesQuantify 客观、一致地完善 ACMG/AMP 证据的能力。BayesQuantify 可从 GitHub 上获取,网址是 https://github.com/liusihan/BayesQuantify。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BayesQuantify: an R package utilized to refine the ACMG/AMP criteria according to the Bayesian framework
Improving the precision and accuracy of variant classification in clinical genetic testing involves further specification and stratification of the ACMG/AMP criteria. The Bayesian framework proposed by ClinGen has provided a mathematical foundation for evidence refinement, successfully quantifying, and extending the evidence strengths of PS1, PS4, PM5, and PP3/BP4. However, existing software and tools designed for quantifying the evidence strength and establishing corresponding thresholds to refine the ACMG/AMP criteria are lacking. To address this gap, we have developed BayesQuantify, an R package that aims to provide users with a unified resource for quantifying the strength of evidence for ACMG/AMP criteria using a naive Bayes classifier. By analyzing publicly available data, we demonstrate BayesQuantify's capability to offer objective and consistent refinement of the ACMG/AMP evidence. BayesQuantify is available from GitHub at https://github.com/liusihan/BayesQuantify.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying individuals at risk for surgical supravalvar aortic stenosis by polygenic risk score with graded phenotyping Exome wide association study for blood lipids in 1,158,017 individuals from diverse populations Allelic effects on KLHL17 expression likely mediated by JunB/D underlie a PDAC GWAS signal at chr1p36.33 Genetic associations between SGLT2 inhibition, DPP4 inhibition or GLP1R agonism and prostate cancer risk: a two-sample Mendelian randomisation study A Genome-wide Association Study Identifies Novel Genetic Variants Associated with Knee Pain in the UK Biobank (N = 441,757)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1