{"title":"利用功能离子液体浸渍萃取色谱树脂分离锝氧化还原剂 ReO4 - 的研究","authors":"Meiying Liu, Xupeng Zhi, Peng Liu, Xiaomin Li, Xinlong Chen, Bin Liu, Yinglin Shen","doi":"10.1515/ract-2024-0290","DOIUrl":null,"url":null,"abstract":"<jats:sup>99</jats:sup>Tc has a long half-life, high fission yield, and good environmental mobility, posing a significant threat to the environment and human health. Therefore, removing technetium from radioactive wastewater is a very important and urgent task. For laboratory safety reasons, ReO<jats:sub>4</jats:sub> <jats:sup>−</jats:sup> is often used as a non-isotopic substitute for <jats:sup>99</jats:sup>TcO<jats:sub>4</jats:sub> <jats:sup>−</jats:sup>. From this point of view, the study of the separation behavior of Re in the aqueous phase can provide a reference value for the removal of <jats:sup>99</jats:sup>Tc. Here, a new type of extraction chromatography resin was prepared by impregnating the functionalized ionic liquid into the macroporous resin, whose imidazolium cations modified by amide functional groups which can effectively capture ReO<jats:sub>4</jats:sub> <jats:sup>−</jats:sup>/TcO<jats:sub>4</jats:sub> <jats:sup>−</jats:sup> from simulated radioactive wastewater. The results show the resin has good adsorption performance and fast adsorption kinetics (the adsorption equilibrium is about 20 min). The adsorption mechanism was investigated using Fourier transform infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS). It shows that the adsorption process is an anion exchange between Cl<jats:sup>−</jats:sup> in the resin and ReO<jats:sub>4</jats:sub> <jats:sup>−</jats:sup> in the solution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on separation of ReO4 −, a substitute for TcO4 −, using functional ionic liquid impregnated extraction chromatography resins\",\"authors\":\"Meiying Liu, Xupeng Zhi, Peng Liu, Xiaomin Li, Xinlong Chen, Bin Liu, Yinglin Shen\",\"doi\":\"10.1515/ract-2024-0290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:sup>99</jats:sup>Tc has a long half-life, high fission yield, and good environmental mobility, posing a significant threat to the environment and human health. Therefore, removing technetium from radioactive wastewater is a very important and urgent task. For laboratory safety reasons, ReO<jats:sub>4</jats:sub> <jats:sup>−</jats:sup> is often used as a non-isotopic substitute for <jats:sup>99</jats:sup>TcO<jats:sub>4</jats:sub> <jats:sup>−</jats:sup>. From this point of view, the study of the separation behavior of Re in the aqueous phase can provide a reference value for the removal of <jats:sup>99</jats:sup>Tc. Here, a new type of extraction chromatography resin was prepared by impregnating the functionalized ionic liquid into the macroporous resin, whose imidazolium cations modified by amide functional groups which can effectively capture ReO<jats:sub>4</jats:sub> <jats:sup>−</jats:sup>/TcO<jats:sub>4</jats:sub> <jats:sup>−</jats:sup> from simulated radioactive wastewater. The results show the resin has good adsorption performance and fast adsorption kinetics (the adsorption equilibrium is about 20 min). The adsorption mechanism was investigated using Fourier transform infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS). It shows that the adsorption process is an anion exchange between Cl<jats:sup>−</jats:sup> in the resin and ReO<jats:sub>4</jats:sub> <jats:sup>−</jats:sup> in the solution.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/ract-2024-0290\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/ract-2024-0290","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Study on separation of ReO4 −, a substitute for TcO4 −, using functional ionic liquid impregnated extraction chromatography resins
99Tc has a long half-life, high fission yield, and good environmental mobility, posing a significant threat to the environment and human health. Therefore, removing technetium from radioactive wastewater is a very important and urgent task. For laboratory safety reasons, ReO4− is often used as a non-isotopic substitute for 99TcO4−. From this point of view, the study of the separation behavior of Re in the aqueous phase can provide a reference value for the removal of 99Tc. Here, a new type of extraction chromatography resin was prepared by impregnating the functionalized ionic liquid into the macroporous resin, whose imidazolium cations modified by amide functional groups which can effectively capture ReO4−/TcO4− from simulated radioactive wastewater. The results show the resin has good adsorption performance and fast adsorption kinetics (the adsorption equilibrium is about 20 min). The adsorption mechanism was investigated using Fourier transform infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS). It shows that the adsorption process is an anion exchange between Cl− in the resin and ReO4− in the solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.