增强型 CZTSSe 薄膜太阳能电池效率:关键参数分析

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Physica Status Solidi A-applications and Materials Science Pub Date : 2024-08-28 DOI:10.1002/pssa.202400332
Loumafak Hafaifa, Mostefa Maache, Selma Rabhi, Zehor Allam, Zineb Ibtissem Gouchida, Yazid Benbouzid, Achouak Zebeir, Razika Adjouz
{"title":"增强型 CZTSSe 薄膜太阳能电池效率:关键参数分析","authors":"Loumafak Hafaifa, Mostefa Maache, Selma Rabhi, Zehor Allam, Zineb Ibtissem Gouchida, Yazid Benbouzid, Achouak Zebeir, Razika Adjouz","doi":"10.1002/pssa.202400332","DOIUrl":null,"url":null,"abstract":"This work presents a numerical simulation study on CZTSSe‐based thin‐film solar cells using Silvaco Atlas software, focusing on optimization and loss analysis. Starting from an initial power conversion efficiency of 12.73%, the ZnO/CdS/CZTSSe cell structure is systematically optimized. Through precise adjustment of layer thickness and doping density, the efficiency is improved to 18.75%. The optimal parameters are 2.5 μm (10<jats:sup>17</jats:sup> cm<jats:sup>−3</jats:sup>) for CZTSSe, 0.01 μm (10<jats:sup>18</jats:sup> cm<jats:sup>−3</jats:sup>) for CdS, and 0.02 μm (10<jats:sup>19</jats:sup> cm<jats:sup>−3</jats:sup>) for ZnO. Loss analysis reveals that increasing CZTSSe thickness beyond 2.5 μm leads to higher bulk series resistance, while thicker CdS and ZnO layers reduce photocurrent generation. Doping density significantly impacts open‐circuit voltage, while layer thickness primarily affects short‐circuit current and fill factor. Performance improves at lower temperatures, achieving 22.2% efficiency at 250 K. These findings provide valuable insights for developing high‐efficiency CZTSSe solar cells.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis\",\"authors\":\"Loumafak Hafaifa, Mostefa Maache, Selma Rabhi, Zehor Allam, Zineb Ibtissem Gouchida, Yazid Benbouzid, Achouak Zebeir, Razika Adjouz\",\"doi\":\"10.1002/pssa.202400332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a numerical simulation study on CZTSSe‐based thin‐film solar cells using Silvaco Atlas software, focusing on optimization and loss analysis. Starting from an initial power conversion efficiency of 12.73%, the ZnO/CdS/CZTSSe cell structure is systematically optimized. Through precise adjustment of layer thickness and doping density, the efficiency is improved to 18.75%. The optimal parameters are 2.5 μm (10<jats:sup>17</jats:sup> cm<jats:sup>−3</jats:sup>) for CZTSSe, 0.01 μm (10<jats:sup>18</jats:sup> cm<jats:sup>−3</jats:sup>) for CdS, and 0.02 μm (10<jats:sup>19</jats:sup> cm<jats:sup>−3</jats:sup>) for ZnO. Loss analysis reveals that increasing CZTSSe thickness beyond 2.5 μm leads to higher bulk series resistance, while thicker CdS and ZnO layers reduce photocurrent generation. Doping density significantly impacts open‐circuit voltage, while layer thickness primarily affects short‐circuit current and fill factor. Performance improves at lower temperatures, achieving 22.2% efficiency at 250 K. These findings provide valuable insights for developing high‐efficiency CZTSSe solar cells.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400332\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400332","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用 Silvaco Atlas 软件对基于 CZTSSe 的薄膜太阳能电池进行了数值模拟研究,重点是优化和损耗分析。从 12.73% 的初始功率转换效率开始,对 ZnO/CdS/CZTSSe 电池结构进行了系统优化。通过精确调整层厚度和掺杂密度,效率提高到 18.75%。最佳参数为:CZTSSe 2.5 μm(1017 cm-3),CdS 0.01 μm(1018 cm-3),ZnO 0.02 μm(1019 cm-3)。损耗分析表明,将 CZTSSe 厚度增加到 2.5 μm 以上会导致较高的体串联电阻,而较厚的 CdS 和 ZnO 层会减少光电流的产生。掺杂密度对开路电压有重大影响,而层厚度则主要影响短路电流和填充因子。这些发现为开发高效 CZTSSe 太阳能电池提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced CZTSSe Thin‐Film Solar Cell Efficiency: Key Parameter Analysis
This work presents a numerical simulation study on CZTSSe‐based thin‐film solar cells using Silvaco Atlas software, focusing on optimization and loss analysis. Starting from an initial power conversion efficiency of 12.73%, the ZnO/CdS/CZTSSe cell structure is systematically optimized. Through precise adjustment of layer thickness and doping density, the efficiency is improved to 18.75%. The optimal parameters are 2.5 μm (1017 cm−3) for CZTSSe, 0.01 μm (1018 cm−3) for CdS, and 0.02 μm (1019 cm−3) for ZnO. Loss analysis reveals that increasing CZTSSe thickness beyond 2.5 μm leads to higher bulk series resistance, while thicker CdS and ZnO layers reduce photocurrent generation. Doping density significantly impacts open‐circuit voltage, while layer thickness primarily affects short‐circuit current and fill factor. Performance improves at lower temperatures, achieving 22.2% efficiency at 250 K. These findings provide valuable insights for developing high‐efficiency CZTSSe solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
393
审稿时长
2 months
期刊介绍: The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.
期刊最新文献
Plasma‐Assisted Preparation and Properties of Chitosan‐Based Magnetic Hydrogels Performance Enhancement of SnS Solar Cell with Tungsten Disulfide Electron Transport Layer and Molybdenum Trioxide Hole Transport Layer Advancements in Piezoelectric‐Enabled Devices for Optical Communication Structural Distortions and Short‐Range Magnetism in a Honeycomb Iridate Cu3ZnIr2O6 Enhancing Reliability and Regeneration of Single Passivated Emitter Rear Contact Solar Cell Modules through Alternating Current Power Application to Mitigate Light and Elevated Temperature‐Induced Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1