Jun-Young Lee, Ji-hoon Kim, Minyong Jung, Boon Kiat Oh, Yongseok Jo, Songyoun Park, Jaehyun Lee, Yuan-Sen Ting, Ho Seong Hwang
{"title":"通过域广义神经网络和光锥模拟推断 SDSS 上的宇宙学参数","authors":"Jun-Young Lee, Ji-hoon Kim, Minyong Jung, Boon Kiat Oh, Yongseok Jo, Songyoun Park, Jaehyun Lee, Yuan-Sen Ting, Ho Seong Hwang","doi":"arxiv-2409.02256","DOIUrl":null,"url":null,"abstract":"We present a proof-of-concept simulation-based inference on $\\Omega_{\\rm m}$\nand $\\sigma_{8}$ from the SDSS BOSS LOWZ NGC catalog using neural networks and\ndomain generalization techniques without the need of summary statistics. Using\nrapid lightcone simulations, ${\\rm L{\\scriptsize -PICOLA}}$, mock galaxy\ncatalogs are produced that fully incorporate the observational effects. The\ncollection of galaxies is fed as input to a point cloud-based network,\n${\\texttt{Minkowski-PointNet}}$. We also add relatively more accurate ${\\rm\nG{\\scriptsize ADGET}}$ mocks to obtain robust and generalizable neural\nnetworks. By explicitly learning the representations which reduces the\ndiscrepancies between the two different datasets via the semantic alignment\nloss term, we show that the latent space configuration aligns into a single\nplane in which the two cosmological parameters form clear axes. Consequently,\nduring inference, the SDSS BOSS LOWZ NGC catalog maps onto the plane,\ndemonstrating effective generalization and improving prediction accuracy\ncompared to non-generalized models. Results from the ensemble of 25\nindependently trained machines find $\\Omega_{\\rm m}=0.339 \\pm 0.056$ and\n$\\sigma_{8}=0.801 \\pm 0.061$, inferred only from the distribution of galaxies\nin the lightcone slices without relying on any indirect summary statistics. A\nsingle machine that best adapts to the ${\\rm G{\\scriptsize ADGET}}$ mocks\nyields a tighter prediction of $\\Omega_{\\rm m}=0.282 \\pm 0.014$ and\n$\\sigma_{8}=0.786 \\pm 0.036$. We emphasize that adaptation across multiple\ndomains can enhance the robustness of the neural networks in observational\ndata.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring Cosmological Parameters on SDSS via Domain-Generalized Neural Networks and Lightcone Simulations\",\"authors\":\"Jun-Young Lee, Ji-hoon Kim, Minyong Jung, Boon Kiat Oh, Yongseok Jo, Songyoun Park, Jaehyun Lee, Yuan-Sen Ting, Ho Seong Hwang\",\"doi\":\"arxiv-2409.02256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a proof-of-concept simulation-based inference on $\\\\Omega_{\\\\rm m}$\\nand $\\\\sigma_{8}$ from the SDSS BOSS LOWZ NGC catalog using neural networks and\\ndomain generalization techniques without the need of summary statistics. Using\\nrapid lightcone simulations, ${\\\\rm L{\\\\scriptsize -PICOLA}}$, mock galaxy\\ncatalogs are produced that fully incorporate the observational effects. The\\ncollection of galaxies is fed as input to a point cloud-based network,\\n${\\\\texttt{Minkowski-PointNet}}$. We also add relatively more accurate ${\\\\rm\\nG{\\\\scriptsize ADGET}}$ mocks to obtain robust and generalizable neural\\nnetworks. By explicitly learning the representations which reduces the\\ndiscrepancies between the two different datasets via the semantic alignment\\nloss term, we show that the latent space configuration aligns into a single\\nplane in which the two cosmological parameters form clear axes. Consequently,\\nduring inference, the SDSS BOSS LOWZ NGC catalog maps onto the plane,\\ndemonstrating effective generalization and improving prediction accuracy\\ncompared to non-generalized models. Results from the ensemble of 25\\nindependently trained machines find $\\\\Omega_{\\\\rm m}=0.339 \\\\pm 0.056$ and\\n$\\\\sigma_{8}=0.801 \\\\pm 0.061$, inferred only from the distribution of galaxies\\nin the lightcone slices without relying on any indirect summary statistics. A\\nsingle machine that best adapts to the ${\\\\rm G{\\\\scriptsize ADGET}}$ mocks\\nyields a tighter prediction of $\\\\Omega_{\\\\rm m}=0.282 \\\\pm 0.014$ and\\n$\\\\sigma_{8}=0.786 \\\\pm 0.036$. We emphasize that adaptation across multiple\\ndomains can enhance the robustness of the neural networks in observational\\ndata.\",\"PeriodicalId\":501207,\"journal\":{\"name\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们利用神经网络和域泛化技术,在不需要汇总统计的情况下,对SDSS BOSS LOWZ NGC星表中的$\Omega_{\rm m}$和$\sigma_{8}$进行了基于概念验证的模拟推断。利用快速光锥模拟(${rm L\scriptsize -PICOLA}}$),生成了完全包含观测效应的模拟星系目录。星系集合被输入到一个基于点云的网络中,${texttt{Minkowski-PointNet}}$。我们还添加了相对更精确的${rmG{scriptsize ADGET}}$模拟,以获得稳健且可泛化的神经网络。通过语义对齐损失项,我们明确地学习了减少两个不同数据集之间差异的表征,结果表明潜在空间配置对齐到了一个单一平面,其中两个宇宙学参数形成了清晰的轴线。因此,在推理过程中,SDSS BOSS LOWZ NGC 星表映射到该平面上,显示了有效的泛化,与非泛化模型相比,提高了预测精度。由25台独立训练过的机器组成的集合的结果显示:$\Omega_{\rm m}=0.339 \pm 0.056$和$\sigma_{8}=0.801 \pm 0.061$,它们都是仅从光锥切片中的星系分布推断出来的,而不依赖任何间接的汇总统计。如果有一台机器能够最好地适应${/rm G{scriptsize ADGET}}$模拟,那么就能得到更精确的预测结果:$\Omega_{/rm m}=0.282 \pm 0.014$和$\sigma_{8}=0.786 \pm 0.036$。我们强调跨多域适应可以增强神经网络在观测数据中的稳健性。
Inferring Cosmological Parameters on SDSS via Domain-Generalized Neural Networks and Lightcone Simulations
We present a proof-of-concept simulation-based inference on $\Omega_{\rm m}$
and $\sigma_{8}$ from the SDSS BOSS LOWZ NGC catalog using neural networks and
domain generalization techniques without the need of summary statistics. Using
rapid lightcone simulations, ${\rm L{\scriptsize -PICOLA}}$, mock galaxy
catalogs are produced that fully incorporate the observational effects. The
collection of galaxies is fed as input to a point cloud-based network,
${\texttt{Minkowski-PointNet}}$. We also add relatively more accurate ${\rm
G{\scriptsize ADGET}}$ mocks to obtain robust and generalizable neural
networks. By explicitly learning the representations which reduces the
discrepancies between the two different datasets via the semantic alignment
loss term, we show that the latent space configuration aligns into a single
plane in which the two cosmological parameters form clear axes. Consequently,
during inference, the SDSS BOSS LOWZ NGC catalog maps onto the plane,
demonstrating effective generalization and improving prediction accuracy
compared to non-generalized models. Results from the ensemble of 25
independently trained machines find $\Omega_{\rm m}=0.339 \pm 0.056$ and
$\sigma_{8}=0.801 \pm 0.061$, inferred only from the distribution of galaxies
in the lightcone slices without relying on any indirect summary statistics. A
single machine that best adapts to the ${\rm G{\scriptsize ADGET}}$ mocks
yields a tighter prediction of $\Omega_{\rm m}=0.282 \pm 0.014$ and
$\sigma_{8}=0.786 \pm 0.036$. We emphasize that adaptation across multiple
domains can enhance the robustness of the neural networks in observational
data.