鲁宾/LSST DC2 模拟中的 YOLO-CL 星团探测

Kirill Grishin, Simona Mei, Stephane Ilic, Michel Aguena, Dominique Boutigny, Marie Paturel, the LSST Dark Energy Science Collaboration
{"title":"鲁宾/LSST DC2 模拟中的 YOLO-CL 星团探测","authors":"Kirill Grishin, Simona Mei, Stephane Ilic, Michel Aguena, Dominique Boutigny, Marie Paturel, the LSST Dark Energy Science Collaboration","doi":"arxiv-2409.03333","DOIUrl":null,"url":null,"abstract":"LSST will provide galaxy cluster catalogs up to z$\\sim$1 that can be used to\nconstrain cosmological models once their selection function is well-understood.\nWe have applied the deep convolutional network YOLO for CLuster detection\n(YOLO-CL) to LSST simulations from the Dark Energy Science Collaboration Data\nChallenge 2 (DC2), and characterized the LSST YOLO-CL cluster selection\nfunction. We have trained and validated the network on images from a hybrid\nsample of (1) clusters observed in the Sloan Digital Sky Survey and detected\nwith the red-sequence Matched-filter Probabilistic Percolation, and (2)\nsimulated DC2 dark matter haloes with masses $M_{200c} > 10^{14} M_{\\odot}$. We\nquantify the completeness and purity of the YOLO-CL cluster catalog with\nrespect to DC2 haloes with $M_{200c} > 10^{14} M_{\\odot}$. The YOLO-CL cluster\ncatalog is 100% and 94% complete for halo mass $M_{200c} > 10^{14.6} M_{\\odot}$\nat $0.2<z<0.8$, and $M_{200c} > 10^{14} M_{\\odot}$ and redshift $z \\lesssim 1$,\nrespectively, with only 6% false positive detections. All the false positive\ndetections are dark matter haloes with $ 10^{13.4} M_{\\odot} \\lesssim M_{200c}\n\\lesssim 10^{14} M_{\\odot}$. The YOLO-CL selection function is almost flat with\nrespect to the halo mass at $0.2 \\lesssim z \\lesssim 0.9$. The overall\nperformance of YOLO-CL is comparable or better than other cluster detection\nmethods used for current and future optical and infrared surveys. YOLO-CL shows\nbetter completeness for low mass clusters when compared to current detections\nin surveys using the Sunyaev Zel'dovich effect, and detects clusters at higher\nredshifts than X-ray-based catalogs. The strong advantage of YOLO-CL over\ntraditional galaxy cluster detection techniques is that it works directly on\nimages and does not require photometric and photometric redshift catalogs, nor\ndoes it need to mask stellar sources and artifacts.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YOLO-CL cluster detection in the Rubin/LSST DC2 simulation\",\"authors\":\"Kirill Grishin, Simona Mei, Stephane Ilic, Michel Aguena, Dominique Boutigny, Marie Paturel, the LSST Dark Energy Science Collaboration\",\"doi\":\"arxiv-2409.03333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LSST will provide galaxy cluster catalogs up to z$\\\\sim$1 that can be used to\\nconstrain cosmological models once their selection function is well-understood.\\nWe have applied the deep convolutional network YOLO for CLuster detection\\n(YOLO-CL) to LSST simulations from the Dark Energy Science Collaboration Data\\nChallenge 2 (DC2), and characterized the LSST YOLO-CL cluster selection\\nfunction. We have trained and validated the network on images from a hybrid\\nsample of (1) clusters observed in the Sloan Digital Sky Survey and detected\\nwith the red-sequence Matched-filter Probabilistic Percolation, and (2)\\nsimulated DC2 dark matter haloes with masses $M_{200c} > 10^{14} M_{\\\\odot}$. We\\nquantify the completeness and purity of the YOLO-CL cluster catalog with\\nrespect to DC2 haloes with $M_{200c} > 10^{14} M_{\\\\odot}$. The YOLO-CL cluster\\ncatalog is 100% and 94% complete for halo mass $M_{200c} > 10^{14.6} M_{\\\\odot}$\\nat $0.2<z<0.8$, and $M_{200c} > 10^{14} M_{\\\\odot}$ and redshift $z \\\\lesssim 1$,\\nrespectively, with only 6% false positive detections. All the false positive\\ndetections are dark matter haloes with $ 10^{13.4} M_{\\\\odot} \\\\lesssim M_{200c}\\n\\\\lesssim 10^{14} M_{\\\\odot}$. The YOLO-CL selection function is almost flat with\\nrespect to the halo mass at $0.2 \\\\lesssim z \\\\lesssim 0.9$. The overall\\nperformance of YOLO-CL is comparable or better than other cluster detection\\nmethods used for current and future optical and infrared surveys. YOLO-CL shows\\nbetter completeness for low mass clusters when compared to current detections\\nin surveys using the Sunyaev Zel'dovich effect, and detects clusters at higher\\nredshifts than X-ray-based catalogs. The strong advantage of YOLO-CL over\\ntraditional galaxy cluster detection techniques is that it works directly on\\nimages and does not require photometric and photometric redshift catalogs, nor\\ndoes it need to mask stellar sources and artifacts.\",\"PeriodicalId\":501207,\"journal\":{\"name\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们已经将用于星系团探测的深度卷积网络YOLO(YOLO-CL)应用于来自暗能量科学协作组数据挑战2(DC2)的LSST模拟,并描述了LSST YOLO-CL星系团选择功能的特征。我们在以下混合样本的图像上训练并验证了该网络:(1)斯隆数字巡天观测到的并用红序匹配滤波概率渗透检测到的星团;(2)质量为$M_{200c}的模拟DC2暗物质晕。> 10^{14}M_{\odot}$。我们计算了YOLO-CL星团目录对于质量为$M_{200c} > 10^{14} M_{odot}$的DC2晕的完整性和纯度。> 10^{14}M_{\odot}$。对于质量为$M_{200c} > 10^{14} M_{odot}$的光环,YOLO-CL星团目录的完整度分别为100%和94%。> 10^{14.6}M_{\odot}$为0.2 10^{14}。M_{\odot}$ 和红移 $z \lesssim 1$,分别只有 6% 的误报。所有的假阳性探测都是暗物质晕,其质量为 $ 10^{13.4}.M_{\odot} \lesssim M_{200c}\lesssim 10^{14}.M_{odot}$。YOLO-CL 的选择函数在 0.2 \lesssim z \lesssim 0.9$ 时与光环质量几乎持平。YOLO-CL的总体性能与当前和未来光学和红外巡天中使用的其他星团探测方法相当,甚至更好。与目前使用苏尼亚耶夫-泽尔多维奇效应(Sunyaev Zel'dovich effect)进行的巡天探测相比,YOLO-CL对低质量星团的探测显示出更高的完整性,而且与基于X射线的星表相比,YOLO-CL能探测到更高红移的星团。与传统的星系团探测技术相比,YOLO-CL的强大优势在于它可以直接在图像上工作,不需要测光和测光红移星表,也不需要掩蔽恒星源和伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YOLO-CL cluster detection in the Rubin/LSST DC2 simulation
LSST will provide galaxy cluster catalogs up to z$\sim$1 that can be used to constrain cosmological models once their selection function is well-understood. We have applied the deep convolutional network YOLO for CLuster detection (YOLO-CL) to LSST simulations from the Dark Energy Science Collaboration Data Challenge 2 (DC2), and characterized the LSST YOLO-CL cluster selection function. We have trained and validated the network on images from a hybrid sample of (1) clusters observed in the Sloan Digital Sky Survey and detected with the red-sequence Matched-filter Probabilistic Percolation, and (2) simulated DC2 dark matter haloes with masses $M_{200c} > 10^{14} M_{\odot}$. We quantify the completeness and purity of the YOLO-CL cluster catalog with respect to DC2 haloes with $M_{200c} > 10^{14} M_{\odot}$. The YOLO-CL cluster catalog is 100% and 94% complete for halo mass $M_{200c} > 10^{14.6} M_{\odot}$ at $0.2 10^{14} M_{\odot}$ and redshift $z \lesssim 1$, respectively, with only 6% false positive detections. All the false positive detections are dark matter haloes with $ 10^{13.4} M_{\odot} \lesssim M_{200c} \lesssim 10^{14} M_{\odot}$. The YOLO-CL selection function is almost flat with respect to the halo mass at $0.2 \lesssim z \lesssim 0.9$. The overall performance of YOLO-CL is comparable or better than other cluster detection methods used for current and future optical and infrared surveys. YOLO-CL shows better completeness for low mass clusters when compared to current detections in surveys using the Sunyaev Zel'dovich effect, and detects clusters at higher redshifts than X-ray-based catalogs. The strong advantage of YOLO-CL over traditional galaxy cluster detection techniques is that it works directly on images and does not require photometric and photometric redshift catalogs, nor does it need to mask stellar sources and artifacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weak Lensing analysis of Abell 2390 using short exposures Optimizing Redshift Distribution Inference through Joint Self-Calibration and Clustering-Redshift Synergy Reionization relics in the cross-correlation between the Ly$α$ forest and 21 cm intensity mapping in the post-reionization era The Low-Redshift Lyman Continuum Survey: The Roles of Stellar Feedback and ISM Geometry in LyC Escape First confirmation of anisotropic bias from statistically anisotropic matter distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1