{"title":"跨尺度线性克莱因-戈登方程的有效高精度时间积分器","authors":"Karolina Kropielnicka, Karolina Lademann, Katharina Schratz","doi":"10.1515/jnma-2023-0070","DOIUrl":null,"url":null,"abstract":"We propose an efficient approach for time integration of Klein–Gordon equations with highly oscillatory in time input terms. The new methods are highly accurate in the entire range, from slowly varying up to highly oscillatory regimes. Our approach is based on splitting methods tailored to the structure of the input term which allows us to resolve the oscillations in the system uniformly in all frequencies, while the error constant does not grow as the oscillations increase. Numerical experiments highlight our theoretical findings and demonstrate the efficiency of the new schemes.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":"166 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective highly accurate time integrators for linear Klein–Gordon equations across the scales\",\"authors\":\"Karolina Kropielnicka, Karolina Lademann, Katharina Schratz\",\"doi\":\"10.1515/jnma-2023-0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an efficient approach for time integration of Klein–Gordon equations with highly oscillatory in time input terms. The new methods are highly accurate in the entire range, from slowly varying up to highly oscillatory regimes. Our approach is based on splitting methods tailored to the structure of the input term which allows us to resolve the oscillations in the system uniformly in all frequencies, while the error constant does not grow as the oscillations increase. Numerical experiments highlight our theoretical findings and demonstrate the efficiency of the new schemes.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":\"166 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2023-0070\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2023-0070","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Effective highly accurate time integrators for linear Klein–Gordon equations across the scales
We propose an efficient approach for time integration of Klein–Gordon equations with highly oscillatory in time input terms. The new methods are highly accurate in the entire range, from slowly varying up to highly oscillatory regimes. Our approach is based on splitting methods tailored to the structure of the input term which allows us to resolve the oscillations in the system uniformly in all frequencies, while the error constant does not grow as the oscillations increase. Numerical experiments highlight our theoretical findings and demonstrate the efficiency of the new schemes.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.