快速投影双谱:滤波方差法

Lea Harscouet, Jessica A. Cowell, Julia Ereza, David Alonso, Hugo Camacho, Andrina Nicola, Anze Slosar
{"title":"快速投影双谱:滤波方差法","authors":"Lea Harscouet, Jessica A. Cowell, Julia Ereza, David Alonso, Hugo Camacho, Andrina Nicola, Anze Slosar","doi":"arxiv-2409.07980","DOIUrl":null,"url":null,"abstract":"The study of third-order statistics in large-scale structure analyses has\nbeen hampered by the increased complexity of bispectrum estimators (compared to\npower spectra), the large dimensionality of the data vector, and the difficulty\nin estimating its covariance matrix. In this paper we present the\nfiltered-squared bispectrum (FSB), an estimator of the projected bispectrum\neffectively consisting of the cross-correlation between the square of a field\nfiltered on a range of scales and the original field. Within this formalism, we\nare able to recycle much of the infrastructure built around power spectrum\nmeasurement to construct an estimator that is both fast and robust against\nmode-coupling effects caused by incomplete sky observations. Furthermore, we\ndemonstrate that the existing techniques for the estimation of analytical power\nspectrum covariances can be used within this formalism to calculate the\nbispectrum covariance at very high accuracy, naturally accounting for the most\nrelevant Gaussian and non-Gaussian contributions in a model-independent manner.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"132 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Projected Bispectra: the filter-square approach\",\"authors\":\"Lea Harscouet, Jessica A. Cowell, Julia Ereza, David Alonso, Hugo Camacho, Andrina Nicola, Anze Slosar\",\"doi\":\"arxiv-2409.07980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of third-order statistics in large-scale structure analyses has\\nbeen hampered by the increased complexity of bispectrum estimators (compared to\\npower spectra), the large dimensionality of the data vector, and the difficulty\\nin estimating its covariance matrix. In this paper we present the\\nfiltered-squared bispectrum (FSB), an estimator of the projected bispectrum\\neffectively consisting of the cross-correlation between the square of a field\\nfiltered on a range of scales and the original field. Within this formalism, we\\nare able to recycle much of the infrastructure built around power spectrum\\nmeasurement to construct an estimator that is both fast and robust against\\nmode-coupling effects caused by incomplete sky observations. Furthermore, we\\ndemonstrate that the existing techniques for the estimation of analytical power\\nspectrum covariances can be used within this formalism to calculate the\\nbispectrum covariance at very high accuracy, naturally accounting for the most\\nrelevant Gaussian and non-Gaussian contributions in a model-independent manner.\",\"PeriodicalId\":501207,\"journal\":{\"name\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大规模结构分析中对三阶统计量的研究一直受到以下因素的阻碍:双谱估计器(与幂谱相比)的复杂性增加、数据矢量的维度大以及估计其协方差矩阵的困难。在本文中,我们提出了滤波平方双谱(FSB),它是一种投影双谱估计器,有效地包含了在一定范围内滤波后的场平方与原始场之间的交叉相关性。在这一形式中,我们能够循环利用围绕功率谱测量建立的大部分基础设施,构建一个既快速又稳健的估计器,以抵御不完整天空观测造成的模式耦合效应。此外,我们还演示了现有的分析功率谱协方差估算技术可以在这一形式中使用,以非常高的精度计算双谱协方差,以一种与模型无关的方式自然地考虑最相关的高斯和非高斯贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Projected Bispectra: the filter-square approach
The study of third-order statistics in large-scale structure analyses has been hampered by the increased complexity of bispectrum estimators (compared to power spectra), the large dimensionality of the data vector, and the difficulty in estimating its covariance matrix. In this paper we present the filtered-squared bispectrum (FSB), an estimator of the projected bispectrum effectively consisting of the cross-correlation between the square of a field filtered on a range of scales and the original field. Within this formalism, we are able to recycle much of the infrastructure built around power spectrum measurement to construct an estimator that is both fast and robust against mode-coupling effects caused by incomplete sky observations. Furthermore, we demonstrate that the existing techniques for the estimation of analytical power spectrum covariances can be used within this formalism to calculate the bispectrum covariance at very high accuracy, naturally accounting for the most relevant Gaussian and non-Gaussian contributions in a model-independent manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weak Lensing analysis of Abell 2390 using short exposures Optimizing Redshift Distribution Inference through Joint Self-Calibration and Clustering-Redshift Synergy Reionization relics in the cross-correlation between the Ly$α$ forest and 21 cm intensity mapping in the post-reionization era The Low-Redshift Lyman Continuum Survey: The Roles of Stellar Feedback and ISM Geometry in LyC Escape First confirmation of anisotropic bias from statistically anisotropic matter distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1