优化和学习纳什均衡的一般框架

Di Zhang, Wei Gu, Qing Jin
{"title":"优化和学习纳什均衡的一般框架","authors":"Di Zhang, Wei Gu, Qing Jin","doi":"arxiv-2408.16260","DOIUrl":null,"url":null,"abstract":"One key in real-life Nash equilibrium applications is to calibrate players'\ncost functions. To leverage the approximation ability of neural networks, we\nproposed a general framework for optimizing and learning Nash equilibrium using\nneural networks to estimate players' cost functions. Depending on the\navailability of data, we propose two approaches (a) the two-stage approach: we\nneed the data pair of players' strategy and relevant function value to first\nlearn the players' cost functions by monotonic neural networks or graph neural\nnetworks, and then solve the Nash equilibrium with the learned neural networks;\n(b) the joint approach: we use the data of partial true observation of the\nequilibrium and contextual information (e.g., weather) to optimize and learn\nNash equilibrium simultaneously. The problem is formulated as an optimization\nproblem with equilibrium constraints and solved using a modified\nBackpropagation Algorithm. The proposed methods are validated in numerical\nexperiments.","PeriodicalId":501273,"journal":{"name":"arXiv - ECON - General Economics","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A General Framework for Optimizing and Learning Nash Equilibrium\",\"authors\":\"Di Zhang, Wei Gu, Qing Jin\",\"doi\":\"arxiv-2408.16260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One key in real-life Nash equilibrium applications is to calibrate players'\\ncost functions. To leverage the approximation ability of neural networks, we\\nproposed a general framework for optimizing and learning Nash equilibrium using\\nneural networks to estimate players' cost functions. Depending on the\\navailability of data, we propose two approaches (a) the two-stage approach: we\\nneed the data pair of players' strategy and relevant function value to first\\nlearn the players' cost functions by monotonic neural networks or graph neural\\nnetworks, and then solve the Nash equilibrium with the learned neural networks;\\n(b) the joint approach: we use the data of partial true observation of the\\nequilibrium and contextual information (e.g., weather) to optimize and learn\\nNash equilibrium simultaneously. The problem is formulated as an optimization\\nproblem with equilibrium constraints and solved using a modified\\nBackpropagation Algorithm. The proposed methods are validated in numerical\\nexperiments.\",\"PeriodicalId\":501273,\"journal\":{\"name\":\"arXiv - ECON - General Economics\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - ECON - General Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - General Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现实生活中纳什均衡应用的关键之一是校准博弈者的成本函数。为了充分利用神经网络的近似能力,我们提出了一个利用神经网络估计博弈者成本函数的纳什均衡优化和学习通用框架。根据数据的可得性,我们提出了两种方法:(a)两阶段方法:我们需要棋手策略和相关函数值的数据对,先用单调神经网络或图神经网络学习棋手的成本函数,然后用学习到的神经网络求解纳什均衡;(b)联合方法:我们使用均衡的部分真实观测数据和上下文信息(如天气),同时优化和学习纳什均衡。该问题被表述为带有均衡约束条件的优化问题,并使用改进的后向传播算法求解。所提出的方法在数值实验中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A General Framework for Optimizing and Learning Nash Equilibrium
One key in real-life Nash equilibrium applications is to calibrate players' cost functions. To leverage the approximation ability of neural networks, we proposed a general framework for optimizing and learning Nash equilibrium using neural networks to estimate players' cost functions. Depending on the availability of data, we propose two approaches (a) the two-stage approach: we need the data pair of players' strategy and relevant function value to first learn the players' cost functions by monotonic neural networks or graph neural networks, and then solve the Nash equilibrium with the learned neural networks; (b) the joint approach: we use the data of partial true observation of the equilibrium and contextual information (e.g., weather) to optimize and learn Nash equilibrium simultaneously. The problem is formulated as an optimization problem with equilibrium constraints and solved using a modified Backpropagation Algorithm. The proposed methods are validated in numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
It depends: Varieties of defining growth dependence Experimental Evidence That Conversational Artificial Intelligence Can Steer Consumer Behavior Without Detection Cognitive Hierarchy in Day-to-day Network Flow Dynamics The long-term human capital and health impacts of a pollution reduction programme What Does ChatGPT Make of Historical Stock Returns? Extrapolation and Miscalibration in LLM Stock Return Forecasts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1