Sanjeev Kumar, Amit Jain, N. Santakrus Singh, Manohar Singh
{"title":"退火后处理对氧化锌薄膜三阶非线性光学特性的影响","authors":"Sanjeev Kumar, Amit Jain, N. Santakrus Singh, Manohar Singh","doi":"10.1134/S1063783424600754","DOIUrl":null,"url":null,"abstract":"<p>This study explores the impact of annealing temperature (TA) on the sol-gel-deposited ZnO thin‑films’ nonlinear optical characteristics on glass substrates. By examining the surface topography with Atomic Force Microscopy (AFM), samples that were annealed at 450°C were found to have the ideal surface smoothness of 9.27 nm. Utilising the second harmonic output of a Nd:YAG laser, the Z-scan technique, UV‑Vis-NIR transmission, and X-ray diffraction (XRD) were employed in the analysis of the films. The materials’ nonlinear optical (NLO) characteristics revealed that the annealing temperature had a significant impact. Notably, the maximum nonlinear optical susceptibility, χ<sup>(3)</sup>, was achieved at an annealing temperature of 450°C, indicating a direct correlation between thermal processing and the enhancement of NLO performance.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 8","pages":"265 - 271"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Post-Annealing Treatments on Third-Order Nonlinear Optical Properties in ZnO Thin Films\",\"authors\":\"Sanjeev Kumar, Amit Jain, N. Santakrus Singh, Manohar Singh\",\"doi\":\"10.1134/S1063783424600754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study explores the impact of annealing temperature (TA) on the sol-gel-deposited ZnO thin‑films’ nonlinear optical characteristics on glass substrates. By examining the surface topography with Atomic Force Microscopy (AFM), samples that were annealed at 450°C were found to have the ideal surface smoothness of 9.27 nm. Utilising the second harmonic output of a Nd:YAG laser, the Z-scan technique, UV‑Vis-NIR transmission, and X-ray diffraction (XRD) were employed in the analysis of the films. The materials’ nonlinear optical (NLO) characteristics revealed that the annealing temperature had a significant impact. Notably, the maximum nonlinear optical susceptibility, χ<sup>(3)</sup>, was achieved at an annealing temperature of 450°C, indicating a direct correlation between thermal processing and the enhancement of NLO performance.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":\"66 8\",\"pages\":\"265 - 271\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783424600754\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783424600754","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Influence of Post-Annealing Treatments on Third-Order Nonlinear Optical Properties in ZnO Thin Films
This study explores the impact of annealing temperature (TA) on the sol-gel-deposited ZnO thin‑films’ nonlinear optical characteristics on glass substrates. By examining the surface topography with Atomic Force Microscopy (AFM), samples that were annealed at 450°C were found to have the ideal surface smoothness of 9.27 nm. Utilising the second harmonic output of a Nd:YAG laser, the Z-scan technique, UV‑Vis-NIR transmission, and X-ray diffraction (XRD) were employed in the analysis of the films. The materials’ nonlinear optical (NLO) characteristics revealed that the annealing temperature had a significant impact. Notably, the maximum nonlinear optical susceptibility, χ(3), was achieved at an annealing temperature of 450°C, indicating a direct correlation between thermal processing and the enhancement of NLO performance.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.