高压力下气泡流的双因素阻力修正模型建模

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Chemical Engineering & Technology Pub Date : 2024-08-29 DOI:10.1002/ceat.202300477
Yibo Gao, Linlin Geng, Patrick G. Verdin, Ibra Fall, Ruijie Zhang, Zhongjie Tian, Desheng Zhang
{"title":"高压力下气泡流的双因素阻力修正模型建模","authors":"Yibo Gao,&nbsp;Linlin Geng,&nbsp;Patrick G. Verdin,&nbsp;Ibra Fall,&nbsp;Ruijie Zhang,&nbsp;Zhongjie Tian,&nbsp;Desheng Zhang","doi":"10.1002/ceat.202300477","DOIUrl":null,"url":null,"abstract":"<p>A pressure correction method is proposed considering the influence of a dual factor. The applicability of a pressure correction method coupled with a drag model is discussed along with the accuracy of the simulation results obtained by such a pressure correction method. It is found that the present pressure correction method combined with the DBS (dual bubble size) drag model can accurately reflect the changing trend of gas holdup distribution with pressure. It is also established that results from this model applied to a bubble column match well with the experimental data. Finally, when compared with other pressure correction models, the proposed model shows better robustness in three-dimensional simulations and can predict radial gas holdup distributions with better accuracy.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Dual-Factor Drag Correction Model for Bubbly Flow under Elevated Pressure\",\"authors\":\"Yibo Gao,&nbsp;Linlin Geng,&nbsp;Patrick G. Verdin,&nbsp;Ibra Fall,&nbsp;Ruijie Zhang,&nbsp;Zhongjie Tian,&nbsp;Desheng Zhang\",\"doi\":\"10.1002/ceat.202300477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A pressure correction method is proposed considering the influence of a dual factor. The applicability of a pressure correction method coupled with a drag model is discussed along with the accuracy of the simulation results obtained by such a pressure correction method. It is found that the present pressure correction method combined with the DBS (dual bubble size) drag model can accurately reflect the changing trend of gas holdup distribution with pressure. It is also established that results from this model applied to a bubble column match well with the experimental data. Finally, when compared with other pressure correction models, the proposed model shows better robustness in three-dimensional simulations and can predict radial gas holdup distributions with better accuracy.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300477\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300477","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

考虑到双重因素的影响,提出了一种压力校正方法。讨论了压力校正方法与阻力模型相结合的适用性,以及这种压力校正方法所得到的模拟结果的准确性。研究发现,本压力修正方法与 DBS(双气泡尺寸)阻力模型相结合,能够准确反映气体滞留分布随压力变化的趋势。研究还证实,该模型应用于气泡柱的结果与实验数据非常吻合。最后,与其他压力校正模型相比,所提出的模型在三维模拟中表现出更好的鲁棒性,并能更准确地预测径向气体滞留分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of Dual-Factor Drag Correction Model for Bubbly Flow under Elevated Pressure

A pressure correction method is proposed considering the influence of a dual factor. The applicability of a pressure correction method coupled with a drag model is discussed along with the accuracy of the simulation results obtained by such a pressure correction method. It is found that the present pressure correction method combined with the DBS (dual bubble size) drag model can accurately reflect the changing trend of gas holdup distribution with pressure. It is also established that results from this model applied to a bubble column match well with the experimental data. Finally, when compared with other pressure correction models, the proposed model shows better robustness in three-dimensional simulations and can predict radial gas holdup distributions with better accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
期刊最新文献
Cover Picture: Chem. Eng. Technol. 11/2024 Editorial Board: Chem. Eng. Technol. 11/2024 Overview Contents: Chem. Eng. Technol. 11/2024 Photoelectrochemical Technology for Solar Fuel: Green Hydrogen, Carbon Dioxide Capture, and Ammonia Production Cover Picture: Chem. Eng. Technol. 10/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1