循环荷载条件下 U 型轻质钢筋混凝土薄壁的实验和数值评估

IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Bulletin of Earthquake Engineering Pub Date : 2024-09-12 DOI:10.1007/s10518-024-01994-x
Carlos A. Blandón, Carlos Arteta, Ricardo Bonett, Julian Carrillo, Katrin Beyer, Joao Almeida
{"title":"循环荷载条件下 U 型轻质钢筋混凝土薄壁的实验和数值评估","authors":"Carlos A. Blandón, Carlos Arteta, Ricardo Bonett, Julian Carrillo, Katrin Beyer, Joao Almeida","doi":"10.1007/s10518-024-01994-x","DOIUrl":null,"url":null,"abstract":"<p>Reinforced concrete walls provide effective bracing against seismic lateral loading for buildings worldwide. In Latin America, seismic design provisions commonly adhere to the ACI 318 building code, which is predominantly based on United States construction practices. However, in some Latin American countries, the construction methods and geometrical configurations of structural walls significantly differ from those in the U.S.; hence, the available information about the actual behavior of such walls under seismic loads is limited. This study focuses on a thin and lightly reinforced concrete wall (TLRCW) building system, which is characterized by walls thinner than 150 mm and primarily reinforced with a single layer of electrowelded wire steel mesh, with no boundary elements but with additional reinforcing bars at the edges. Past experiments on rectangular and T-shaped walls of the TLRCW building system, which were tested under unidirectional cyclic loading, exhibited limited rotational capacities. This article extends these findings by presenting results from a multidirectional loading test on a U-shaped thin wall and assessing its failure modes, strength and displacement capacity, deformation components, and stiffness degradation. A numerical model based on a nonlinear beam-truss approach was implemented to evaluate the accuracy of the estimates of key performance variables of the wall. The experimental results show limited displacement capacity below 1.15% drift, with a failure mode controlled by concrete crushing at the flange toes. The numerical model was able to capture some of the key global response parameters for all the load directions and at the local level, but with less accuracy.</p>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"2012 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical evaluation of a U-shaped thin lightly reinforced concrete wall tested under cyclic loading\",\"authors\":\"Carlos A. Blandón, Carlos Arteta, Ricardo Bonett, Julian Carrillo, Katrin Beyer, Joao Almeida\",\"doi\":\"10.1007/s10518-024-01994-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reinforced concrete walls provide effective bracing against seismic lateral loading for buildings worldwide. In Latin America, seismic design provisions commonly adhere to the ACI 318 building code, which is predominantly based on United States construction practices. However, in some Latin American countries, the construction methods and geometrical configurations of structural walls significantly differ from those in the U.S.; hence, the available information about the actual behavior of such walls under seismic loads is limited. This study focuses on a thin and lightly reinforced concrete wall (TLRCW) building system, which is characterized by walls thinner than 150 mm and primarily reinforced with a single layer of electrowelded wire steel mesh, with no boundary elements but with additional reinforcing bars at the edges. Past experiments on rectangular and T-shaped walls of the TLRCW building system, which were tested under unidirectional cyclic loading, exhibited limited rotational capacities. This article extends these findings by presenting results from a multidirectional loading test on a U-shaped thin wall and assessing its failure modes, strength and displacement capacity, deformation components, and stiffness degradation. A numerical model based on a nonlinear beam-truss approach was implemented to evaluate the accuracy of the estimates of key performance variables of the wall. The experimental results show limited displacement capacity below 1.15% drift, with a failure mode controlled by concrete crushing at the flange toes. The numerical model was able to capture some of the key global response parameters for all the load directions and at the local level, but with less accuracy.</p>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10518-024-01994-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10518-024-01994-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

钢筋混凝土墙为世界各地的建筑物提供了有效的抗震支撑。在拉丁美洲,抗震设计规定通常遵循 ACI 318 建筑规范,该规范主要基于美国的建筑实践。然而,在一些拉美国家,结构墙的施工方法和几何构造与美国有很大不同;因此,关于此类墙体在地震荷载作用下的实际行为的可用信息非常有限。本研究的重点是轻薄加固混凝土墙(TLRCW)建筑系统,其特点是墙体厚度小于 150 毫米,主要用单层电焊钢丝网加固,没有边界构件,但在边缘有附加钢筋。过去对 TLRCW 建筑系统的矩形和 T 形墙进行的单向循环荷载试验显示,其旋转能力有限。本文通过对 U 型薄壁进行多向加载试验,并评估其破坏模式、强度和位移能力、变形成分和刚度退化情况,从而扩展了上述研究结果。采用了基于非线性梁-桁架方法的数值模型,以评估对薄壁关键性能变量估计的准确性。实验结果表明,在低于 1.15%漂移的情况下,墙体的位移能力有限,失效模式由翼缘端部的混凝土破碎控制。数值模型能够捕捉到所有荷载方向和局部水平的一些关键全局响应参数,但精度较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and numerical evaluation of a U-shaped thin lightly reinforced concrete wall tested under cyclic loading

Reinforced concrete walls provide effective bracing against seismic lateral loading for buildings worldwide. In Latin America, seismic design provisions commonly adhere to the ACI 318 building code, which is predominantly based on United States construction practices. However, in some Latin American countries, the construction methods and geometrical configurations of structural walls significantly differ from those in the U.S.; hence, the available information about the actual behavior of such walls under seismic loads is limited. This study focuses on a thin and lightly reinforced concrete wall (TLRCW) building system, which is characterized by walls thinner than 150 mm and primarily reinforced with a single layer of electrowelded wire steel mesh, with no boundary elements but with additional reinforcing bars at the edges. Past experiments on rectangular and T-shaped walls of the TLRCW building system, which were tested under unidirectional cyclic loading, exhibited limited rotational capacities. This article extends these findings by presenting results from a multidirectional loading test on a U-shaped thin wall and assessing its failure modes, strength and displacement capacity, deformation components, and stiffness degradation. A numerical model based on a nonlinear beam-truss approach was implemented to evaluate the accuracy of the estimates of key performance variables of the wall. The experimental results show limited displacement capacity below 1.15% drift, with a failure mode controlled by concrete crushing at the flange toes. The numerical model was able to capture some of the key global response parameters for all the load directions and at the local level, but with less accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
期刊最新文献
Does seismic isolation reduce the seismic vulnerability and the variability of the inelastic seismic response? Large-scale experimental investigation Advanced nonlinear soil-structure interaction model for the seismic analysis of safety-related nuclear structures Experimental investigation on the seismic performance of reinforced concrete frames with decoupled masonry infills: considering in-plane and out-of-plane load interaction effects Seismicity in Central America (1520–2020) and Earthquake catalog compilation for seismic hazard assessments Extended Bouc-Wen model identification using shaking table test data of ageing RC bridge piers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1