Dr. Vu Tung Lam Tran, Dr. Lan Huong Phung, Dr. Anh Vu Nguyen, Dr. Minh Ngoc Ha, Assoc. Prof. Dr. Pham Thanh Huyen
{"title":"通过纤维和颗粒活性炭上的动态吸附去除空气中的甲苯","authors":"Dr. Vu Tung Lam Tran, Dr. Lan Huong Phung, Dr. Anh Vu Nguyen, Dr. Minh Ngoc Ha, Assoc. Prof. Dr. Pham Thanh Huyen","doi":"10.1002/ceat.202300556","DOIUrl":null,"url":null,"abstract":"<p>The selection of adsorbents is critical for developing an adsorption unit. In this study, a activated carbon fibers (ACF) and a granular-activated carbon (GAC) were evaluated in dynamic toluene adsorption to determine their benefits and limitations. A variety of physicochemical approaches were used to characterize the samples. Adsorption under varied circumstances demonstrated that ACF has a larger adsorption capacity and a longer saturation time than GAC. The Langmuir isotherm suited equilibrium data well. Thermodynamic characteristics showed that adsorption was spontaneous and exothermic. The adsorption kinetics were found to be dominated by the pseudo-first-order model, with GAC having a greater sorption rate. Thermal regeneration appeared to be more favorable for ACF.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Airborne Toluene Removal by Dynamic Adsorption on Fiber- and Granular-Activated Carbon\",\"authors\":\"Dr. Vu Tung Lam Tran, Dr. Lan Huong Phung, Dr. Anh Vu Nguyen, Dr. Minh Ngoc Ha, Assoc. Prof. Dr. Pham Thanh Huyen\",\"doi\":\"10.1002/ceat.202300556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The selection of adsorbents is critical for developing an adsorption unit. In this study, a activated carbon fibers (ACF) and a granular-activated carbon (GAC) were evaluated in dynamic toluene adsorption to determine their benefits and limitations. A variety of physicochemical approaches were used to characterize the samples. Adsorption under varied circumstances demonstrated that ACF has a larger adsorption capacity and a longer saturation time than GAC. The Langmuir isotherm suited equilibrium data well. Thermodynamic characteristics showed that adsorption was spontaneous and exothermic. The adsorption kinetics were found to be dominated by the pseudo-first-order model, with GAC having a greater sorption rate. Thermal regeneration appeared to be more favorable for ACF.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300556\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300556","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Airborne Toluene Removal by Dynamic Adsorption on Fiber- and Granular-Activated Carbon
The selection of adsorbents is critical for developing an adsorption unit. In this study, a activated carbon fibers (ACF) and a granular-activated carbon (GAC) were evaluated in dynamic toluene adsorption to determine their benefits and limitations. A variety of physicochemical approaches were used to characterize the samples. Adsorption under varied circumstances demonstrated that ACF has a larger adsorption capacity and a longer saturation time than GAC. The Langmuir isotherm suited equilibrium data well. Thermodynamic characteristics showed that adsorption was spontaneous and exothermic. The adsorption kinetics were found to be dominated by the pseudo-first-order model, with GAC having a greater sorption rate. Thermal regeneration appeared to be more favorable for ACF.
期刊介绍:
This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering.
Chemical Engineering & Technology is:
Competent with contributions written and refereed by outstanding professionals from around the world.
Essential because it is an international forum for the exchange of ideas and experiences.
Topical because its articles treat the very latest developments in the field.