带有噪声门的贝叶斯网络智能辅导系统

Alessandro Antonucci, Francesca Mangili, Claudio Bonesana, Giorgia Adorni
{"title":"带有噪声门的贝叶斯网络智能辅导系统","authors":"Alessandro Antonucci, Francesca Mangili, Claudio Bonesana, Giorgia Adorni","doi":"arxiv-2409.04102","DOIUrl":null,"url":null,"abstract":"Directed graphical models such as Bayesian nets are often used to implement\nintelligent tutoring systems able to interact in real-time with learners in a\npurely automatic way. When coping with such models, keeping a bound on the\nnumber of parameters might be important for multiple reasons. First, as these\nmodels are typically based on expert knowledge, a huge number of parameters to\nelicit might discourage practitioners from adopting them. Moreover, the number\nof model parameters affects the complexity of the inferences, while a fast\ncomputation of the queries is needed for real-time feedback. We advocate\nlogical gates with uncertainty for a compact parametrization of the conditional\nprobability tables in the underlying Bayesian net used by tutoring systems. We\ndiscuss the semantics of the model parameters to elicit and the assumptions\nrequired to apply such approach in this domain. We also derive a dedicated\ninference scheme to speed up computations.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"405 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent tutoring systems by Bayesian networks with noisy gates\",\"authors\":\"Alessandro Antonucci, Francesca Mangili, Claudio Bonesana, Giorgia Adorni\",\"doi\":\"arxiv-2409.04102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directed graphical models such as Bayesian nets are often used to implement\\nintelligent tutoring systems able to interact in real-time with learners in a\\npurely automatic way. When coping with such models, keeping a bound on the\\nnumber of parameters might be important for multiple reasons. First, as these\\nmodels are typically based on expert knowledge, a huge number of parameters to\\nelicit might discourage practitioners from adopting them. Moreover, the number\\nof model parameters affects the complexity of the inferences, while a fast\\ncomputation of the queries is needed for real-time feedback. We advocate\\nlogical gates with uncertainty for a compact parametrization of the conditional\\nprobability tables in the underlying Bayesian net used by tutoring systems. We\\ndiscuss the semantics of the model parameters to elicit and the assumptions\\nrequired to apply such approach in this domain. We also derive a dedicated\\ninference scheme to speed up computations.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"405 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有向图模型(如贝叶斯网)通常用于实现智能辅导系统,该系统能够以纯粹自动的方式与学习者进行实时交互。在处理这类模型时,出于多种原因,对参数数量保持一定的限制可能很重要。首先,由于这些模型通常以专家知识为基础,如果要获取大量参数,可能会让从业者望而却步。此外,模型参数的数量会影响推论的复杂性,而实时反馈需要快速计算查询。我们提倡在辅导系统使用的底层贝叶斯网中,用不确定性逻辑门对条件概率表进行紧凑的参数化。我们讨论了模型参数的语义,以及在该领域应用这种方法所需的假设。我们还推导出一种专用推理方案,以加快计算速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent tutoring systems by Bayesian networks with noisy gates
Directed graphical models such as Bayesian nets are often used to implement intelligent tutoring systems able to interact in real-time with learners in a purely automatic way. When coping with such models, keeping a bound on the number of parameters might be important for multiple reasons. First, as these models are typically based on expert knowledge, a huge number of parameters to elicit might discourage practitioners from adopting them. Moreover, the number of model parameters affects the complexity of the inferences, while a fast computation of the queries is needed for real-time feedback. We advocate logical gates with uncertainty for a compact parametrization of the conditional probability tables in the underlying Bayesian net used by tutoring systems. We discuss the semantics of the model parameters to elicit and the assumptions required to apply such approach in this domain. We also derive a dedicated inference scheme to speed up computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1