将类比增强生成与程序性记忆配对用于程序性问答

K Roth, Rushil Gupta, Simon Halle, Bang Liu
{"title":"将类比增强生成与程序性记忆配对用于程序性问答","authors":"K Roth, Rushil Gupta, Simon Halle, Bang Liu","doi":"arxiv-2409.01344","DOIUrl":null,"url":null,"abstract":"While LLMs in the RAG paradigm have shown remarkable performance on a variety\nof tasks, they still under-perform on unseen domains, especially on complex\ntasks like procedural question answering. In this work, we introduce a novel\nformalism and structure for manipulating text-based procedures. Based on this\nformalism, we further present a novel dataset called LCStep, scraped from the\nLangChain Python docs. Moreover, we extend the traditional RAG system to\npropose a novel system called analogy-augmented generation (AAG), that draws\ninspiration from human analogical reasoning and ability to assimilate past\nexperiences to solve unseen problems. The proposed method uses a frozen\nlanguage model with a custom procedure memory store to adapt to specialized\nknowledge. We demonstrate that AAG outperforms few-shot and RAG baselines on\nLCStep, RecipeNLG, and CHAMP datasets under a pairwise LLM-based evaluation,\ncorroborated by human evaluation in the case of RecipeNLG.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pairing Analogy-Augmented Generation with Procedural Memory for Procedural Q&A\",\"authors\":\"K Roth, Rushil Gupta, Simon Halle, Bang Liu\",\"doi\":\"arxiv-2409.01344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While LLMs in the RAG paradigm have shown remarkable performance on a variety\\nof tasks, they still under-perform on unseen domains, especially on complex\\ntasks like procedural question answering. In this work, we introduce a novel\\nformalism and structure for manipulating text-based procedures. Based on this\\nformalism, we further present a novel dataset called LCStep, scraped from the\\nLangChain Python docs. Moreover, we extend the traditional RAG system to\\npropose a novel system called analogy-augmented generation (AAG), that draws\\ninspiration from human analogical reasoning and ability to assimilate past\\nexperiences to solve unseen problems. The proposed method uses a frozen\\nlanguage model with a custom procedure memory store to adapt to specialized\\nknowledge. We demonstrate that AAG outperforms few-shot and RAG baselines on\\nLCStep, RecipeNLG, and CHAMP datasets under a pairwise LLM-based evaluation,\\ncorroborated by human evaluation in the case of RecipeNLG.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然 RAG 范式中的 LLM 在各种任务中都表现出了不俗的性能,但它们在未知领域中的表现仍然不佳,尤其是在像程序问题解答这样的完整任务中。在这项工作中,我们引入了一种新颖的形式主义和结构,用于处理基于文本的程序。基于这种形式主义,我们进一步提出了一种名为 LCStep 的新型数据集,该数据集是从 LangChain Python 文档中提取的。此外,我们还对传统的 RAG 系统进行了扩展,提出了一种名为类比增强生成(AAG)的新系统,该系统从人类的类比推理和吸收粘贴经验的能力中汲取灵感,以解决未曾见过的问题。所提出的方法使用带有自定义过程存储的冻结语言模型,以适应专门的知识。我们证明,在基于成对 LLM 的评估中,AAG 在 LCStep、RecipeNLG 和 CHAMP 数据集上的表现优于 few-shot 和 RAG 基线,而在 RecipeNLG 数据集上,人类评估也证实了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pairing Analogy-Augmented Generation with Procedural Memory for Procedural Q&A
While LLMs in the RAG paradigm have shown remarkable performance on a variety of tasks, they still under-perform on unseen domains, especially on complex tasks like procedural question answering. In this work, we introduce a novel formalism and structure for manipulating text-based procedures. Based on this formalism, we further present a novel dataset called LCStep, scraped from the LangChain Python docs. Moreover, we extend the traditional RAG system to propose a novel system called analogy-augmented generation (AAG), that draws inspiration from human analogical reasoning and ability to assimilate past experiences to solve unseen problems. The proposed method uses a frozen language model with a custom procedure memory store to adapt to specialized knowledge. We demonstrate that AAG outperforms few-shot and RAG baselines on LCStep, RecipeNLG, and CHAMP datasets under a pairwise LLM-based evaluation, corroborated by human evaluation in the case of RecipeNLG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1