防冻聚乙烯醇有机水凝胶传感器,含自组装在氧化石墨烯纳米片上的聚吡咯纳米线,具有高导电性和更好的机械性能

Pengcheng Yang, Junwei Bai, Federico Olivieri, Chiara Santillo, Rachele Castaldo, Gennaro Gentile, Junhua Zhang, Marino Lavorgna, Giovanna G. Buonocore
{"title":"防冻聚乙烯醇有机水凝胶传感器,含自组装在氧化石墨烯纳米片上的聚吡咯纳米线,具有高导电性和更好的机械性能","authors":"Pengcheng Yang, Junwei Bai, Federico Olivieri, Chiara Santillo, Rachele Castaldo, Gennaro Gentile, Junhua Zhang, Marino Lavorgna, Giovanna G. Buonocore","doi":"10.1002/admt.202400970","DOIUrl":null,"url":null,"abstract":"Conductive hydrogels exhibit significant potential for flexible electronics owing to their exceptional flexibility, resistance to deformation, and high conductivity. However, there is a critical need to develop hydrogels that can withstand extremely low temperatures while exhibiting good mechanical properties. In this study, carboxyl‐modified polyvinyl alcohol (PVA) as the gel matrix, dimethylsulfoxide and water as a mixed solvent solution, and graphene oxide (GO) assembled polypyrrole (PPy) nanowires are used to prepare a new type of antifreeze conductive organohydrogel (PGOPPy). The PGOPPy organohydrogel demonstrates outstanding antifreeze properties, retaining its flexibility at temperatures as low as −75 °C. It exhibits a fracture strength of 0.80 MPa and an elongation at break of 436% at room temperature. Remarkably, after being stored at room temperature for 15 days, the diameter of the PGOPPy organohydrogel changes only by 4%. Moreover, PGOPPy shows high electrical conductivity, up to 1.07 S m<jats:sup>−1</jats:sup>, and exhibits variable conductivity in response to mechanical deformation, with a stable response over cyclic deformations, allowing its use as a sensor to monitor body movements. Results demonstrate that the developed material is very promising as an effective sensor technology for use in extremely cold environments. Moreover, this work provides a general method for preparing antifreeze organhydrogels using water and dimethylsulfoxide as mixed solvents.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antifreeze Polyvinyl Alcohol Organohydrogel Sensors Containing Polypyrrole Nanowires Self‐Assembled onto Graphene Oxide Nanoplatelets with High Electrical Conductivity and Improved Mechanical Properties\",\"authors\":\"Pengcheng Yang, Junwei Bai, Federico Olivieri, Chiara Santillo, Rachele Castaldo, Gennaro Gentile, Junhua Zhang, Marino Lavorgna, Giovanna G. Buonocore\",\"doi\":\"10.1002/admt.202400970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conductive hydrogels exhibit significant potential for flexible electronics owing to their exceptional flexibility, resistance to deformation, and high conductivity. However, there is a critical need to develop hydrogels that can withstand extremely low temperatures while exhibiting good mechanical properties. In this study, carboxyl‐modified polyvinyl alcohol (PVA) as the gel matrix, dimethylsulfoxide and water as a mixed solvent solution, and graphene oxide (GO) assembled polypyrrole (PPy) nanowires are used to prepare a new type of antifreeze conductive organohydrogel (PGOPPy). The PGOPPy organohydrogel demonstrates outstanding antifreeze properties, retaining its flexibility at temperatures as low as −75 °C. It exhibits a fracture strength of 0.80 MPa and an elongation at break of 436% at room temperature. Remarkably, after being stored at room temperature for 15 days, the diameter of the PGOPPy organohydrogel changes only by 4%. Moreover, PGOPPy shows high electrical conductivity, up to 1.07 S m<jats:sup>−1</jats:sup>, and exhibits variable conductivity in response to mechanical deformation, with a stable response over cyclic deformations, allowing its use as a sensor to monitor body movements. Results demonstrate that the developed material is very promising as an effective sensor technology for use in extremely cold environments. Moreover, this work provides a general method for preparing antifreeze organhydrogels using water and dimethylsulfoxide as mixed solvents.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202400970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导电水凝胶具有优异的柔韧性、抗变形性和高导电性,因此在柔性电子器件方面具有巨大的潜力。然而,目前亟需开发既能承受极低温度,又能表现出良好机械性能的水凝胶。本研究以羧基改性聚乙烯醇(PVA)为凝胶基质,以二甲基亚砜和水为混合溶剂溶液,采用氧化石墨烯(GO)组装聚吡咯(PPy)纳米线制备了一种新型防冻导电有机水凝胶(PGOPPy)。PGOPPy 有机水凝胶具有出色的防冻性能,在低至 -75 °C 的温度下仍能保持柔韧性。它在室温下的断裂强度为 0.80 兆帕,断裂伸长率为 436%。值得注意的是,在室温下存放 15 天后,PGOPPy 有机水凝胶的直径变化仅为 4%。此外,PGOPPy 还具有很高的导电性(高达 1.07 S m-1),并且在机械变形时具有可变的导电性,在循环变形时具有稳定的响应,因此可用作监测身体运动的传感器。研究结果表明,所开发的材料作为一种有效的传感器技术,在极寒环境中的应用前景非常广阔。此外,这项研究还提供了一种使用水和二甲基亚砜作为混合溶剂制备防冻有机水凝胶的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antifreeze Polyvinyl Alcohol Organohydrogel Sensors Containing Polypyrrole Nanowires Self‐Assembled onto Graphene Oxide Nanoplatelets with High Electrical Conductivity and Improved Mechanical Properties
Conductive hydrogels exhibit significant potential for flexible electronics owing to their exceptional flexibility, resistance to deformation, and high conductivity. However, there is a critical need to develop hydrogels that can withstand extremely low temperatures while exhibiting good mechanical properties. In this study, carboxyl‐modified polyvinyl alcohol (PVA) as the gel matrix, dimethylsulfoxide and water as a mixed solvent solution, and graphene oxide (GO) assembled polypyrrole (PPy) nanowires are used to prepare a new type of antifreeze conductive organohydrogel (PGOPPy). The PGOPPy organohydrogel demonstrates outstanding antifreeze properties, retaining its flexibility at temperatures as low as −75 °C. It exhibits a fracture strength of 0.80 MPa and an elongation at break of 436% at room temperature. Remarkably, after being stored at room temperature for 15 days, the diameter of the PGOPPy organohydrogel changes only by 4%. Moreover, PGOPPy shows high electrical conductivity, up to 1.07 S m−1, and exhibits variable conductivity in response to mechanical deformation, with a stable response over cyclic deformations, allowing its use as a sensor to monitor body movements. Results demonstrate that the developed material is very promising as an effective sensor technology for use in extremely cold environments. Moreover, this work provides a general method for preparing antifreeze organhydrogels using water and dimethylsulfoxide as mixed solvents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma-Generated Luminescent Coatings: Innovations in Thermal Sensitivity and Corrosion Resistance Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle Spectral Analysis on Color Detection Sharpness of Animal Vision toward Polychromatic Vision System Evaporated Copper-Based Perovskite Dynamic Memristors for Reservoir Computing Systems Hydrocarbon-Based Ionomer/PTFE-Reinforced Composite Membrane Through Multibar Coating Technique for Durable Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1