物理虚拟化 GFET,实现室温下目标气体分子的多功能、高通量和高分辨检测

Michele Zanotti, Sonia Freddi, Luigi Sangaletti
{"title":"物理虚拟化 GFET,实现室温下目标气体分子的多功能、高通量和高分辨检测","authors":"Michele Zanotti, Sonia Freddi, Luigi Sangaletti","doi":"10.1002/admt.202400985","DOIUrl":null,"url":null,"abstract":"An e‐nose is built on a single graphene field effect transistor (GFET), based on a graphene/Si<jats:sub>3</jats:sub>N<jats:sub>4</jats:sub>/p‐Si stack of layers. Multichannel data acquisition, enabling to mimic the architecture of a sensor array, is achieved by steering the gate potential, thus yielding a virtual array of 2D chemiresistors on a single sensing layer. This setting allows for the detection of volatile compounds with a remarkable discrimination capability, boosted by intensive machine learning analysis and accuracy maximization through the choice of the number of virtual sensors. Sensing of gas phase NH<jats:sub>3</jats:sub> is tested, along with a set of possible interferents, and discrimination of NH<jats:sub>3</jats:sub>+NO<jats:sub>2</jats:sub> mixtures is successfully probed. High throughput in terms of sensitivity is achieved by tracking the shift of the minimum of the GFET transfer curve versus NH<jats:sub>3</jats:sub> concentration. With this readout scheme, a 20‐fold sensitivity increase over a 5–50 ppm range is registered to the same layer used as a chemiresistor. High discrimination capability is probed by leveraging machine learning algorithms, from principal component analysis (PCA) to Uniform Manifold Approximation and Projection (U‐MAP) and, finally, to a Deep Neural Networks (DNN) where input neurons are the virtual sensors created by the gate voltage driving. For the tested case, the DNN maximum accuracy is achieved with 21 virtual sensors.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical Virtualization of a GFET for a Versatile, High‐Throughput, and Highly Discriminating Detection of Target Gas Molecules at Room Temperature\",\"authors\":\"Michele Zanotti, Sonia Freddi, Luigi Sangaletti\",\"doi\":\"10.1002/admt.202400985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An e‐nose is built on a single graphene field effect transistor (GFET), based on a graphene/Si<jats:sub>3</jats:sub>N<jats:sub>4</jats:sub>/p‐Si stack of layers. Multichannel data acquisition, enabling to mimic the architecture of a sensor array, is achieved by steering the gate potential, thus yielding a virtual array of 2D chemiresistors on a single sensing layer. This setting allows for the detection of volatile compounds with a remarkable discrimination capability, boosted by intensive machine learning analysis and accuracy maximization through the choice of the number of virtual sensors. Sensing of gas phase NH<jats:sub>3</jats:sub> is tested, along with a set of possible interferents, and discrimination of NH<jats:sub>3</jats:sub>+NO<jats:sub>2</jats:sub> mixtures is successfully probed. High throughput in terms of sensitivity is achieved by tracking the shift of the minimum of the GFET transfer curve versus NH<jats:sub>3</jats:sub> concentration. With this readout scheme, a 20‐fold sensitivity increase over a 5–50 ppm range is registered to the same layer used as a chemiresistor. High discrimination capability is probed by leveraging machine learning algorithms, from principal component analysis (PCA) to Uniform Manifold Approximation and Projection (U‐MAP) and, finally, to a Deep Neural Networks (DNN) where input neurons are the virtual sensors created by the gate voltage driving. For the tested case, the DNN maximum accuracy is achieved with 21 virtual sensors.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202400985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子鼻是建立在单个石墨烯场效应晶体管(GFET)上的,该场效应晶体管基于石墨烯/Si3N4/p-Si 层叠。通过调节栅极电位,可实现多通道数据采集,从而在单个传感层上形成一个虚拟的二维化学电阻器阵列,以模仿传感器阵列的结构。通过密集的机器学习分析,以及通过选择虚拟传感器的数量来最大限度地提高准确性,这种设置可以检测挥发性化合物,并具有显著的分辨能力。对气相 NH3 以及一系列可能的干扰物的传感进行了测试,并成功探测了 NH3+NO2 混合物的分辨能力。通过跟踪 GFET 转移曲线的最小值相对于 NH3 浓度的移动,实现了灵敏度方面的高通量。采用这种读出方案,在 5-50 ppm 的范围内,作为化学电阻器使用的同一层的灵敏度提高了 20 倍。通过利用机器学习算法,从主成分分析 (PCA) 到均匀曲面逼近和投影 (U-MAP),最后到深度神经网络 (DNN),其中输入神经元是由栅极电压驱动创建的虚拟传感器,从而探测高分辨能力。在测试案例中,21 个虚拟传感器实现了 DNN 的最高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physical Virtualization of a GFET for a Versatile, High‐Throughput, and Highly Discriminating Detection of Target Gas Molecules at Room Temperature
An e‐nose is built on a single graphene field effect transistor (GFET), based on a graphene/Si3N4/p‐Si stack of layers. Multichannel data acquisition, enabling to mimic the architecture of a sensor array, is achieved by steering the gate potential, thus yielding a virtual array of 2D chemiresistors on a single sensing layer. This setting allows for the detection of volatile compounds with a remarkable discrimination capability, boosted by intensive machine learning analysis and accuracy maximization through the choice of the number of virtual sensors. Sensing of gas phase NH3 is tested, along with a set of possible interferents, and discrimination of NH3+NO2 mixtures is successfully probed. High throughput in terms of sensitivity is achieved by tracking the shift of the minimum of the GFET transfer curve versus NH3 concentration. With this readout scheme, a 20‐fold sensitivity increase over a 5–50 ppm range is registered to the same layer used as a chemiresistor. High discrimination capability is probed by leveraging machine learning algorithms, from principal component analysis (PCA) to Uniform Manifold Approximation and Projection (U‐MAP) and, finally, to a Deep Neural Networks (DNN) where input neurons are the virtual sensors created by the gate voltage driving. For the tested case, the DNN maximum accuracy is achieved with 21 virtual sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma-Generated Luminescent Coatings: Innovations in Thermal Sensitivity and Corrosion Resistance Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle Spectral Analysis on Color Detection Sharpness of Animal Vision toward Polychromatic Vision System Evaporated Copper-Based Perovskite Dynamic Memristors for Reservoir Computing Systems Hydrocarbon-Based Ionomer/PTFE-Reinforced Composite Membrane Through Multibar Coating Technique for Durable Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1