我们能指望法律硕士吗?固定效应谬误与 GPT-4 能力主张

Thomas Ball, Shuo Chen, Cormac Herley
{"title":"我们能指望法律硕士吗?固定效应谬误与 GPT-4 能力主张","authors":"Thomas Ball, Shuo Chen, Cormac Herley","doi":"arxiv-2409.07638","DOIUrl":null,"url":null,"abstract":"In this paper we explore evaluation of LLM capabilities. We present\nmeasurements of GPT-4 performance on several deterministic tasks; each task\ninvolves a basic calculation and takes as input parameter some element drawn\nfrom a large well-defined population (e.g., count elements in a list, multiply\ntwo k-digit numbers, etc). We examine several conditions per-task and perform\nenough trials so that statistically significant differences can be detected.\nThis allows us to investigate the sensitivity of task-accuracy both to query\nphrasing and input parameter population. We find that seemingly trivial\nmodifications in the task-prompt or input population can yield differences far\nlarger than can be explained by sampling effects. For example, performance on a\nsimple list-counting task varies with query-phrasing and list-length, but also\nwith list composition (i.e., the thing-to-be-counted) and object frequency\n(e.g., success when an element accounts for $\\approx$ 50\\% of a list is\ndifferent from when it accounts for $\\approx$ 70\\% etc). We conclude that efforts to quantify LLM capabilities easily succumb to the\nlanguage-as-fixed-effect fallacy, where experimental observations are\nimproperly generalized beyond what the data supports. A consequence appears to\nbe that intuitions that have been formed based on interactions with humans form\na very unreliable guide as to which input modifications should ``make no\ndifference'' to LLM performance.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can We Count on LLMs? The Fixed-Effect Fallacy and Claims of GPT-4 Capabilities\",\"authors\":\"Thomas Ball, Shuo Chen, Cormac Herley\",\"doi\":\"arxiv-2409.07638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we explore evaluation of LLM capabilities. We present\\nmeasurements of GPT-4 performance on several deterministic tasks; each task\\ninvolves a basic calculation and takes as input parameter some element drawn\\nfrom a large well-defined population (e.g., count elements in a list, multiply\\ntwo k-digit numbers, etc). We examine several conditions per-task and perform\\nenough trials so that statistically significant differences can be detected.\\nThis allows us to investigate the sensitivity of task-accuracy both to query\\nphrasing and input parameter population. We find that seemingly trivial\\nmodifications in the task-prompt or input population can yield differences far\\nlarger than can be explained by sampling effects. For example, performance on a\\nsimple list-counting task varies with query-phrasing and list-length, but also\\nwith list composition (i.e., the thing-to-be-counted) and object frequency\\n(e.g., success when an element accounts for $\\\\approx$ 50\\\\% of a list is\\ndifferent from when it accounts for $\\\\approx$ 70\\\\% etc). We conclude that efforts to quantify LLM capabilities easily succumb to the\\nlanguage-as-fixed-effect fallacy, where experimental observations are\\nimproperly generalized beyond what the data supports. A consequence appears to\\nbe that intuitions that have been formed based on interactions with humans form\\na very unreliable guide as to which input modifications should ``make no\\ndifference'' to LLM performance.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了对 LLM 能力的评估。我们展示了 GPT-4 在几项确定性任务上的性能测量结果;每项任务都涉及基本计算,并将从一个定义明确的大群体中抽取的某些元素作为输入参数(例如,计算列表中的元素、两个 k 位数相乘等)。这样,我们就可以研究任务准确性对问句和输入参数群的敏感性。我们发现,对任务提示或输入参数进行看似微不足道的修改,所产生的差异却远远大于抽样效应所能解释的差异。例如,在简单的列表计数任务中,表现会随着查询措辞和列表长度的变化而变化,但也会随着列表组成(即要计数的事物)和对象频率的变化而变化(例如,当一个元素占列表的 50% 左右时,其成功率与占 70% 左右时的成功率是不同的)。我们的结论是,量化 LLM 能力的努力很容易陷入 "语言即固定效应"(language-as-fixed-effect)的谬误,即实验观察结果被适当地概括为超出了数据所支持的范围。其后果似乎是,基于与人类互动而形成的直觉,对于哪些输入修改应该 "对 LLM 性能产生影响",是一种非常不可靠的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can We Count on LLMs? The Fixed-Effect Fallacy and Claims of GPT-4 Capabilities
In this paper we explore evaluation of LLM capabilities. We present measurements of GPT-4 performance on several deterministic tasks; each task involves a basic calculation and takes as input parameter some element drawn from a large well-defined population (e.g., count elements in a list, multiply two k-digit numbers, etc). We examine several conditions per-task and perform enough trials so that statistically significant differences can be detected. This allows us to investigate the sensitivity of task-accuracy both to query phrasing and input parameter population. We find that seemingly trivial modifications in the task-prompt or input population can yield differences far larger than can be explained by sampling effects. For example, performance on a simple list-counting task varies with query-phrasing and list-length, but also with list composition (i.e., the thing-to-be-counted) and object frequency (e.g., success when an element accounts for $\approx$ 50\% of a list is different from when it accounts for $\approx$ 70\% etc). We conclude that efforts to quantify LLM capabilities easily succumb to the language-as-fixed-effect fallacy, where experimental observations are improperly generalized beyond what the data supports. A consequence appears to be that intuitions that have been formed based on interactions with humans form a very unreliable guide as to which input modifications should ``make no difference'' to LLM performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1