{"title":"利用会话式人工智能(CAI)系统客观评估创意的新颖数学框架","authors":"B. Sankar, Dibakar Sen","doi":"arxiv-2409.07578","DOIUrl":null,"url":null,"abstract":"The demand for innovation in product design necessitates a prolific ideation\nphase. Conversational AI (CAI) systems that use Large Language Models (LLMs)\nsuch as GPT (Generative Pre-trained Transformer) have been shown to be fruitful\nin augmenting human creativity, providing numerous novel and diverse ideas.\nDespite the success in ideation quantity, the qualitative assessment of these\nideas remains challenging and traditionally reliant on expert human evaluation.\nThis method suffers from limitations such as human judgment errors, bias, and\noversight. Addressing this gap, our study introduces a comprehensive\nmathematical framework for automated analysis to objectively evaluate the\nplethora of ideas generated by CAI systems and/or humans. This framework is\nparticularly advantageous for novice designers who lack experience in selecting\npromising ideas. By converting the ideas into higher dimensional vectors and\nquantitatively measuring the diversity between them using tools such as UMAP,\nDBSCAN and PCA, the proposed method provides a reliable and objective way of\nselecting the most promising ideas, thereby enhancing the efficiency of the\nideation phase.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Mathematical Framework for Objective Evaluation of Ideas using a Conversational AI (CAI) System\",\"authors\":\"B. Sankar, Dibakar Sen\",\"doi\":\"arxiv-2409.07578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for innovation in product design necessitates a prolific ideation\\nphase. Conversational AI (CAI) systems that use Large Language Models (LLMs)\\nsuch as GPT (Generative Pre-trained Transformer) have been shown to be fruitful\\nin augmenting human creativity, providing numerous novel and diverse ideas.\\nDespite the success in ideation quantity, the qualitative assessment of these\\nideas remains challenging and traditionally reliant on expert human evaluation.\\nThis method suffers from limitations such as human judgment errors, bias, and\\noversight. Addressing this gap, our study introduces a comprehensive\\nmathematical framework for automated analysis to objectively evaluate the\\nplethora of ideas generated by CAI systems and/or humans. This framework is\\nparticularly advantageous for novice designers who lack experience in selecting\\npromising ideas. By converting the ideas into higher dimensional vectors and\\nquantitatively measuring the diversity between them using tools such as UMAP,\\nDBSCAN and PCA, the proposed method provides a reliable and objective way of\\nselecting the most promising ideas, thereby enhancing the efficiency of the\\nideation phase.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
产品设计中的创新需求需要一个多产的构思阶段。使用大型语言模型(LLM)(如GPT(生成预训练转换器))的会话式人工智能(CAI)系统在增强人类创造力方面取得了丰硕成果,提供了大量新颖多样的想法。尽管在构思数量上取得了成功,但对这些想法的定性评估仍具有挑战性,传统上依赖于专家人工评估。针对这一缺陷,我们的研究引入了一个全面的数学框架,用于自动分析,客观评估 CAI 系统和/或人类产生的大量创意。对于缺乏经验的新手设计者来说,这个框架尤其具有优势。通过将创意转换成高维向量,并使用 UMAP、DBSCAN 和 PCA 等工具定量测量它们之间的多样性,所提出的方法为选择最有前途的创意提供了一种可靠而客观的方法,从而提高了创意阶段的效率。
A Novel Mathematical Framework for Objective Evaluation of Ideas using a Conversational AI (CAI) System
The demand for innovation in product design necessitates a prolific ideation
phase. Conversational AI (CAI) systems that use Large Language Models (LLMs)
such as GPT (Generative Pre-trained Transformer) have been shown to be fruitful
in augmenting human creativity, providing numerous novel and diverse ideas.
Despite the success in ideation quantity, the qualitative assessment of these
ideas remains challenging and traditionally reliant on expert human evaluation.
This method suffers from limitations such as human judgment errors, bias, and
oversight. Addressing this gap, our study introduces a comprehensive
mathematical framework for automated analysis to objectively evaluate the
plethora of ideas generated by CAI systems and/or humans. This framework is
particularly advantageous for novice designers who lack experience in selecting
promising ideas. By converting the ideas into higher dimensional vectors and
quantitatively measuring the diversity between them using tools such as UMAP,
DBSCAN and PCA, the proposed method provides a reliable and objective way of
selecting the most promising ideas, thereby enhancing the efficiency of the
ideation phase.