利用会话式人工智能(CAI)系统客观评估创意的新颖数学框架

B. Sankar, Dibakar Sen
{"title":"利用会话式人工智能(CAI)系统客观评估创意的新颖数学框架","authors":"B. Sankar, Dibakar Sen","doi":"arxiv-2409.07578","DOIUrl":null,"url":null,"abstract":"The demand for innovation in product design necessitates a prolific ideation\nphase. Conversational AI (CAI) systems that use Large Language Models (LLMs)\nsuch as GPT (Generative Pre-trained Transformer) have been shown to be fruitful\nin augmenting human creativity, providing numerous novel and diverse ideas.\nDespite the success in ideation quantity, the qualitative assessment of these\nideas remains challenging and traditionally reliant on expert human evaluation.\nThis method suffers from limitations such as human judgment errors, bias, and\noversight. Addressing this gap, our study introduces a comprehensive\nmathematical framework for automated analysis to objectively evaluate the\nplethora of ideas generated by CAI systems and/or humans. This framework is\nparticularly advantageous for novice designers who lack experience in selecting\npromising ideas. By converting the ideas into higher dimensional vectors and\nquantitatively measuring the diversity between them using tools such as UMAP,\nDBSCAN and PCA, the proposed method provides a reliable and objective way of\nselecting the most promising ideas, thereby enhancing the efficiency of the\nideation phase.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Mathematical Framework for Objective Evaluation of Ideas using a Conversational AI (CAI) System\",\"authors\":\"B. Sankar, Dibakar Sen\",\"doi\":\"arxiv-2409.07578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for innovation in product design necessitates a prolific ideation\\nphase. Conversational AI (CAI) systems that use Large Language Models (LLMs)\\nsuch as GPT (Generative Pre-trained Transformer) have been shown to be fruitful\\nin augmenting human creativity, providing numerous novel and diverse ideas.\\nDespite the success in ideation quantity, the qualitative assessment of these\\nideas remains challenging and traditionally reliant on expert human evaluation.\\nThis method suffers from limitations such as human judgment errors, bias, and\\noversight. Addressing this gap, our study introduces a comprehensive\\nmathematical framework for automated analysis to objectively evaluate the\\nplethora of ideas generated by CAI systems and/or humans. This framework is\\nparticularly advantageous for novice designers who lack experience in selecting\\npromising ideas. By converting the ideas into higher dimensional vectors and\\nquantitatively measuring the diversity between them using tools such as UMAP,\\nDBSCAN and PCA, the proposed method provides a reliable and objective way of\\nselecting the most promising ideas, thereby enhancing the efficiency of the\\nideation phase.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

产品设计中的创新需求需要一个多产的构思阶段。使用大型语言模型(LLM)(如GPT(生成预训练转换器))的会话式人工智能(CAI)系统在增强人类创造力方面取得了丰硕成果,提供了大量新颖多样的想法。尽管在构思数量上取得了成功,但对这些想法的定性评估仍具有挑战性,传统上依赖于专家人工评估。针对这一缺陷,我们的研究引入了一个全面的数学框架,用于自动分析,客观评估 CAI 系统和/或人类产生的大量创意。对于缺乏经验的新手设计者来说,这个框架尤其具有优势。通过将创意转换成高维向量,并使用 UMAP、DBSCAN 和 PCA 等工具定量测量它们之间的多样性,所提出的方法为选择最有前途的创意提供了一种可靠而客观的方法,从而提高了创意阶段的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Mathematical Framework for Objective Evaluation of Ideas using a Conversational AI (CAI) System
The demand for innovation in product design necessitates a prolific ideation phase. Conversational AI (CAI) systems that use Large Language Models (LLMs) such as GPT (Generative Pre-trained Transformer) have been shown to be fruitful in augmenting human creativity, providing numerous novel and diverse ideas. Despite the success in ideation quantity, the qualitative assessment of these ideas remains challenging and traditionally reliant on expert human evaluation. This method suffers from limitations such as human judgment errors, bias, and oversight. Addressing this gap, our study introduces a comprehensive mathematical framework for automated analysis to objectively evaluate the plethora of ideas generated by CAI systems and/or humans. This framework is particularly advantageous for novice designers who lack experience in selecting promising ideas. By converting the ideas into higher dimensional vectors and quantitatively measuring the diversity between them using tools such as UMAP, DBSCAN and PCA, the proposed method provides a reliable and objective way of selecting the most promising ideas, thereby enhancing the efficiency of the ideation phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1