通过元发现预测游戏平衡变化影响的框架

Akash Saravanan, Matthew Guzdial
{"title":"通过元发现预测游戏平衡变化影响的框架","authors":"Akash Saravanan, Matthew Guzdial","doi":"arxiv-2409.07340","DOIUrl":null,"url":null,"abstract":"A metagame is a collection of knowledge that goes beyond the rules of a game.\nIn competitive, team-based games like Pok\\'emon or League of Legends, it refers\nto the set of current dominant characters and/or strategies within the player\nbase. Developer changes to the balance of the game can have drastic and\nunforeseen consequences on these sets of meta characters. A framework for\npredicting the impact of balance changes could aid developers in making more\ninformed balance decisions. In this paper we present such a Meta Discovery\nframework, leveraging Reinforcement Learning for automated testing of balance\nchanges. Our results demonstrate the ability to predict the outcome of balance\nchanges in Pok\\'emon Showdown, a collection of competitive Pok\\'emon tiers,\nwith high accuracy.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for Predicting the Impact of Game Balance Changes through Meta Discovery\",\"authors\":\"Akash Saravanan, Matthew Guzdial\",\"doi\":\"arxiv-2409.07340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A metagame is a collection of knowledge that goes beyond the rules of a game.\\nIn competitive, team-based games like Pok\\\\'emon or League of Legends, it refers\\nto the set of current dominant characters and/or strategies within the player\\nbase. Developer changes to the balance of the game can have drastic and\\nunforeseen consequences on these sets of meta characters. A framework for\\npredicting the impact of balance changes could aid developers in making more\\ninformed balance decisions. In this paper we present such a Meta Discovery\\nframework, leveraging Reinforcement Learning for automated testing of balance\\nchanges. Our results demonstrate the ability to predict the outcome of balance\\nchanges in Pok\\\\'emon Showdown, a collection of competitive Pok\\\\'emon tiers,\\nwith high accuracy.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在《Pok\'emon》或《英雄联盟》等以团队为基础的竞技游戏中,元游戏是指玩家群体中当前占主导地位的角色和/或策略的集合。开发者对游戏平衡性的改变可能会对这些元角色集产生不可预见的严重后果。一个预测平衡性变化影响的框架可以帮助开发者做出更明智的平衡性决策。在本文中,我们提出了这样一个元发现框架,利用强化学习技术对平衡性变化进行自动测试。我们的研究结果表明,我们能够高精度地预测《Pok\'emon Showdown》中平衡性变化的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Framework for Predicting the Impact of Game Balance Changes through Meta Discovery
A metagame is a collection of knowledge that goes beyond the rules of a game. In competitive, team-based games like Pok\'emon or League of Legends, it refers to the set of current dominant characters and/or strategies within the player base. Developer changes to the balance of the game can have drastic and unforeseen consequences on these sets of meta characters. A framework for predicting the impact of balance changes could aid developers in making more informed balance decisions. In this paper we present such a Meta Discovery framework, leveraging Reinforcement Learning for automated testing of balance changes. Our results demonstrate the ability to predict the outcome of balance changes in Pok\'emon Showdown, a collection of competitive Pok\'emon tiers, with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1